Mission System and Command Interpreter

Abstract

 The Mission System handles updates for all objects in the world. Each object has a program associated with it, some event programs in response to stimuli, and a few miscellaneous settings and IP information. The Mission System simply checks to see if the current instruction is completed (through AI’s Evaluate function), and selects the proper next command to process.

Description

 There are two main parts of the mission system’s Command Interpreter. The first part is the main program, or Ideal Program. It represents the sequence a ship would follow if no events are triggered to interrupt its path and duties. The second part is the event expressions and their respective programs. These are the commands that are set to interrupt the main program at any time, based on which event occurred.

Main Program/Ideal Program

 Very simply, each instruction in the mission language is composed of an OPCODE(PARAMETER,PARAMETER,PARAMETER,PARAMETER). Even if not all parameters are used, they will take up this space for simplicity in loading, jumping, and indexing. Each of the five components are 32-bit longwords. Each instruction is called in order, and is passed to a corresponding AI function that acts out the command. If the AI function returns TRUE, the command was successful and allows the mission program to proceed to the next instruction. Otherwise, reinsert the object into the scheduling queue at an appropriate timeframe.

Event Programs

 There are an unlimited number of events, and attached event programs, for each object. Each update of the main program, all active events are tested for truth. Each event is a boolean expression, and activates its program any time it is TRUE. This interrupts the main program, setting the IP to the first instruction on the interrupting event program, passing back that instruction for AI to process.

 Each event may be turned off, or turned on through a toggle event function. This allows events to form a priority system, such that the first instruction of an event program should probably turn off any event that should NOT interrupt its execution. In other words, events can interrupt events. Any event that has been triggered and is in the process of execution (though perhaps interrupted at the moment) can NOT interrupt any currently active program.

�

IP Stack

 There must be an IP Stack which remembers the state of the previous program and the IP within it, and which program the IP was pointing inside. Otherwise, an event could not terminate and return to a prior event or main program. The logical limit to the size of the stack SHOULD be equal to the

#(event programs)+ (main programs=1). Events currently on the stack should not be allowed to interrupt any program currently in progress--this prevents infinite recursion.

AI System

 Almost all of the mission commands that are not related to the mission system or mission programs or event system will be found in sister-functions in the AI system. All flags, registers, and so on for a given object will be inside the object’s AI structure. There will be no global flags unless absolutely necessary.

JH 9/27/96

