

�

Wing Commander 5

PC

PSX

Technical Design Document

Origin/EA Confidential

Version 1.0

� SAVEDATE \@ "M/d/yy" * MERGEFORMAT �7/19/96�

Copy Number � FILLIN "Copy number" * MERGEFORMAT �1�:� FILLIN "Assigned to" * MERGEFORMAT �MORONE�

�Table of Contents

� TOC \t "Heading 8,1,Heading 9,2" �Section 1 - Story and Game Design	� GOTOBUTTON _Toc369968636 � PAGEREF _Toc369968636 �6��

	� GOTOBUTTON _Toc369968637 � PAGEREF _Toc369968637 �6��

General Goals	� GOTOBUTTON _Toc369968638 � PAGEREF _Toc369968638 �7��

General Gameplay	� GOTOBUTTON _Toc369968639 � PAGEREF _Toc369968639 �7��

Plot Summary	� GOTOBUTTON _Toc369968640 � PAGEREF _Toc369968640 �10��

5 minutes of gameplay	� GOTOBUTTON _Toc369968641 � PAGEREF _Toc369968641 �17��

Ship design	� GOTOBUTTON _Toc369968642 � PAGEREF _Toc369968642 �20��

Section 2 - Libraries and Tools	� GOTOBUTTON _Toc369968643 � PAGEREF _Toc369968643 �48��

	� GOTOBUTTON _Toc369968644 � PAGEREF _Toc369968644 �48��

Objectives of the tools group	� GOTOBUTTON _Toc369968645 � PAGEREF _Toc369968645 �49��

Mission Editor Overview	� GOTOBUTTON _Toc369968646 � PAGEREF _Toc369968646 �50��

Mission Editor Scripting Constructs	� GOTOBUTTON _Toc369968647 � PAGEREF _Toc369968647 �52��

Preliminary file formats	� GOTOBUTTON _Toc369968648 � PAGEREF _Toc369968648 �56��

Section 3 - Programming	� GOTOBUTTON _Toc369968649 � PAGEREF _Toc369968649 �68��

	� GOTOBUTTON _Toc369968650 � PAGEREF _Toc369968650 �68��

Technical Features	� GOTOBUTTON _Toc369968651 � PAGEREF _Toc369968651 �69��

Technical Issues	� GOTOBUTTON _Toc369968652 � PAGEREF _Toc369968652 �70��

Render System Overview	� GOTOBUTTON _Toc369968653 � PAGEREF _Toc369968653 �72��

3D Application Programmer’s Interface (API)	� GOTOBUTTON _Toc369968654 � PAGEREF _Toc369968654 �75��

Physics Model	� GOTOBUTTON _Toc369968655 � PAGEREF _Toc369968655 �79��

Communications	� GOTOBUTTON _Toc369968656 � PAGEREF _Toc369968656 �80��

Weapons System	� GOTOBUTTON _Toc369968657 � PAGEREF _Toc369968657 �81��

VCR Playback System	� GOTOBUTTON _Toc369968658 � PAGEREF _Toc369968658 �83��

HUD : Multi-Function Display (MFD)	� GOTOBUTTON _Toc369968659 � PAGEREF _Toc369968659 �85��

Artificial Intelligence	� GOTOBUTTON _Toc369968660 � PAGEREF _Toc369968660 �88��

Gameflow	� GOTOBUTTON _Toc369968661 � PAGEREF _Toc369968661 �90��

Section 4 - Art and Production Design	� GOTOBUTTON _Toc369968662 � PAGEREF _Toc369968662 �94��

Conceptual ship sketches	� GOTOBUTTON _Toc369968663 � PAGEREF _Toc369968663 �95��

Section 5 - Audio	� GOTOBUTTON _Toc369968664 � PAGEREF _Toc369968664 �98��

	� GOTOBUTTON _Toc369968665 � PAGEREF _Toc369968665 �98��

Upping the Audio ante on Wing Commander Five	� GOTOBUTTON _Toc369968666 � PAGEREF _Toc369968666 �99��

Section 6 - Team Organization	� GOTOBUTTON _Toc369968667 � PAGEREF _Toc369968667 �103��

PC	� GOTOBUTTON _Toc369968668 � PAGEREF _Toc369968668 �104��

PSX	� GOTOBUTTON _Toc369968669 � PAGEREF _Toc369968669 �115��

Section 7 - Schedules	� GOTOBUTTON _Toc369968670 � PAGEREF _Toc369968670 �122��

Overall Project Schedule	� GOTOBUTTON _Toc369968671 � PAGEREF _Toc369968671 �123��

Detailed Programming Schedule	� GOTOBUTTON _Toc369968672 � PAGEREF _Toc369968672 �124��

Detailed Art Schedule	� GOTOBUTTON _Toc369968673 � PAGEREF _Toc369968673 �125��

�

�

Section 1 - Story and Game Design

��General Goals

Wing Commander 5 is designed to continue the success of the Wing Commander series while providing the fictional foundation for a sustainable expanded product line.

The universe is a big place; all previous Wing Commanders took place in just a small corner of the galaxy. The Wing Commander 5 story will be the basis for an expanded fictional universe full of potential, including a sustainable core product line (Wing Commander 6, 7…) as well as an extended product line (Privateer: The Darkening, and any other action oriented game we can fit into the fiction).

Wing Commander 5 will take the Wing Commander series to its next level. Wing Commander 4 was the best interactive movie in the gaming industry. WC 5 will be known as both the best interactive movie and the best space combat game in the universe.

General Gameplay

At the simplest level, the game will be about the player's character success and the Confederation’s success in the overall war effort.

Player Success:

The player begins in the equivalent of the pansy division as an inexperienced rookie pilot and ends the game as an elite member of the equivalent of the Seal division. The story follows the player's successes and promotions through the course of the war. The player will be rewarded for his successes.

One of the main offerings of the game will be the player's chance for success. Each battle victory will be a personal triumph as well as a strategic war victory. Battle victories achieved will be rewarded by cooler ships and better mission assignments. This will have a huge addictive appeal to the gaming audience. This is the same ‘can’t sleep ‘till I get to the next level’ appeal that will keep our customers dedicated. We want our customers glowing about the best gaming experience ever. Wing 3 and Wing 4 couldn’t offer this kind of game experience because the main character, Blair, was already a colonel.

The player will be assigned to progressively more reputable Squadrons. And naturally, the most reputable squadrons have the coolest ships. The player will eagerly anticipate being transferred to the next squadron. This will be more tangible than any promotion or medal. Once the player proves himself, he gets to play with the best hardware, spaceships. All the more motivation to excel in this game. Additionally, each squadron will have a personality (the Wing Commander), represented by a plot character. These characters will go through the same dynamic character development as the main character.

Confederation Success:

WC5 will proceed geographically toward the enemy front line. The front line of the war is ever-changing through the progression of a war. WC5 is no different. As the player gets promoted to more reputable squadrons, he also moves closer to the enemy front line. The player will be fully aware of the universe map. In between missions he will watch the progression of warfront on the sector map.

��

�Plot Summary

Prologue

A Kilrathi colonial or research base is seen drifting amidst the wreckage of Kilrah. A violent rift appears in space before it, clearly discernible from the opening of a jump point. Aggressive-looking alien spacecraft of a kind never before seen pour from it, and the Kilrathi base is destroyed.

Act One

Part One: Training and Orientation

	It is several days or weeks later. On board TCS Midway, a new Confed super-carrier, the player is introduced to the new protagonist and is familiarized with the new ships and systems of the game via several live-fire training missions. He also meets many of his new wingman, in particular a pilot we will call Pilot X, who, very much like the protagonist, is somewhat introverted and also an exceptional pilot. They become friends.

Part Two: Enemy Recon

	During a training mission in Kilrathi space, the Protagonist is diverted to investigate an unknown contact. It appears to be an unmanned probe exhibiting the same look-and-feel of the aliens which attacked the Kilrathi. When it is approached too closely, it self-destructs.

	

Shortly thereafter Midway receives a garbled distress call from what appears to be the commander of a Kilrathi strike force comprised of what could only be the vast majority of the cat’s remaining military power. Despite fears of a Kilrathi trap, Midway investigates but discovers only a vast field of wreckage: the remains of the Kilrathi armada. Marines are dispatched from Midway to investigate one of the more intact hulks, and live video feeds show carnage within, Kilrathi slaughtered and torn to pieces like house cats.

Before the Marines can be extracted, alien fighters suddenly appear and chaos ensues. The protagonist must defend the Marine transport until the soldiers have re-boarded and they may retreat.

�

Part Three: Battle

Midway finds that it has lost its ability to contact the Confed Starbase in the region: apparently, a vital communications relay station is down. Lacking a plan, the carrier retreats to a neighboring star system to regroup, but discovers what is apparently the cruiser-centered strike force which ravaged the Kilrathi fleet lurking there. A set-piece battle between the opposing forces ensues, spanning the course of several missions. It is noted that the alien combat transmissions are cloudy and broken, revealing silhouetted figures speaking only in an alien tongue. It is believed the low quality of the transmissions derives from the aliens’ transmitting in a way not entirely compatible with Confed receivers. At one point Pilot X remarks that he finds he truly enjoys the power he feels when making a combat kill.

Part Four: The Relay Station

Victorious, Midway leaves the system to investigate the off-line communications grid. It finds the grid seemingly intact, but guarded by alien vessels which her pilots destroy or drive away. No contact can be made with the station, and the protagonist and several other fighter pilots escort a shuttle bearing Marines and a repair party towards it. As they arrive, a small alien force enters the area. As Midway’s shields are still under repair following the previous fleet engagement (in the aftermath of which they experienced a technical failure, not combat damage), it is decided she must retreat. There is no time for the protagonist, Pilot X, and the Marine landing craft to return before her departure, and they find themselves in the position of having to hide out in the station while awaiting Midway’s return. At one point the pilots must fly a mission from the station’s small shuttle bay, without the benefit of missile re-loads.

While exploring the mysteriously deserted outpost, Pilot X and the Protagonist find a single, large room in which the station’s entire population has been methodically slaughtered in a particularly gruesome fashion: vivisected, dismembered, and sorted. The Protagonist leaves the room sickened, but Pilot X stays behind for a moment. He seems to be fascinated by the carnage. Later, when he returns again to see the bloodbath, something huge and alien reaches out of the shadows, and there is an unusual flash light. Pilot X has disappeared without a trace.

The protagonist is left to defend the station alone, and is nearly overwhelmed by the aliens—led by an exceptional pilot in a conspicuously marked fighter—during a final dogfight. A flight of Midway’s fighters, however, intervenes and saves the day (though the alien ace escapes). With the carrier back in action, the base is restored to operation with all alien forces swept from the system.

Act Two

Part One: Strike

The relay station repaired, Midway receives a distress call from a Kilrathi world in an adjacent system which is also a key jump-point junction into Confed space. It is under attack by what appears to be the alien’s main invasion force, and is near collapse. Should this happen, the aliens will have a perfect staging area for a massive assault at the Confed Sector Starbase, a handful of jumps away from the Kilrathi junction system. Fortunately, as the forces at the relay station were clearly intended to not only shut down the Kilrathi’s ability to alert Confed of the sneak attack, but also guard the invasion force’s flank, it is clear Midway is now in a position to strike decisively at the enemy from an unexpected quarter. Messages are sent to alert Confed of the alien presence and to ask for immediate reinforcements, and Midway jumps to the battlefront.

	Arriving at the Kilrathi system, Midway discovers a captured war-era Kilrathi military buoy being used by the aliens as an ELINT platform. As the buoy has been modified with alien circuitry intended to translate the buoy’s information from Kilrathi to something more understandable by the aliens, it is seen as holding major potential for both deciphering parts of the alien language and decoding their cryptography, and is brought on board.

Shortly thereafter, Midway launches a massive strike which heavily damages the alien invasion fleet, ravaging a lightly-defended transport convoy destined for the planetary front. This buys the Kilrathi defenders on the planet time to bolster their positions and stave off—for the moment—ultimate defeat.

Part Two: Retaliation

The aliens, enraged, set about hunting down and destroying Midway, which must now simply stay alive until Confed reinforcements alive. Over the course of several days the carrier alternately hides and marauds through the system, waging a hit-and-run guerrilla war against overwhelming odds, doing damage to the enemy whenever and however it can. More pilots in the conspicuously-marked fighters appear, suggesting an elite cadre of aliens is now involved in the invasion. Progress made in breaking the alien linguistic and cryptological barriers aids immensely, providing snippets of information about alien movements and dispositions. It also enables the Confed pilots to modify their radios such that they can receive alien combat transmissions clearly, though this only reveals helmeted figures continuing to speak in an alien tongue.

The same communications breakthroughs also allows Midway to intercept data which suggests a human is being held captive at a secret alien outpost, where he is apparently the subject of research. The carrier launches a commando raid to rescue him, and it is discovered the prisoner is Pilot X: bloody, battered, violated in a variety of ways, but alive. Despite his inability to remember anything that has happened to him, he soon checks out physically okay and is returned to active flight status.

Part Three: Success

	The cavalry finally arrives in the form of a hastily-assembled Confed armada, and Midway is able to retake the offensive. Several battles follow, and as Confed forces spread out through the system news continues to be heard of the distinctively-marked alien fighters, now with individual alien pilots coming to be known and feared (the most notorious being the one encountered by the protagonist near the relay station).

Paramount to the alien’s success is the retention of a captured Kilrathi starbase located at one of the planet’s la grange points, and it becomes the focus of a massive Confed offensive aimed at retaking it. Success leaves the aliens retreating the system in disarray.

	

	In the course of the battle, an alien destroyer which had been tied to the station while apparently under repairs breaks away and attempts to flee, despite the fact that its shields are inoperable. The protagonist is diverted to disable its engines, allowing Marines to board it and capture the vessel. In the process they even manage to apprehend two live aliens, who are brought aboard Midway. Gunplay ensues as the hideous and lethal creatures try to escape, and one is killed. The other is hurried away to the brig for further study, but shortly thereafter is found torn apart and smeared across its cell following flashes of light and sound identical to those associated with the disappearance of Pilot X.

Act Three

Part One: Preparations

	A week passes as the Confed forces take stock. Reinforcements continue to arrive, and as thoughts turn to the offensive Admiral Christopher Blair joins the crew of Midway. Also, analysis of captured alien weaponry leads to the improvement of some systems on Midway’s fighters.

	Comparing notes from the Kilrathi, who claim that the aliens first appeared in the Kilrah system, and information gleaned from the captured alien starship, Confed learns that the aliens have constructed some form of stargate--an artificial, permanently-open jump-point--there. Through it they gain their access to our space, and only by closing it can their offensive be broken with any certainty. It is believed that such a space-time structure would necessarily be quite unstable, and a special matter/anti-matter bomb is constructed. Made of two large tanks separated by a detonating mechanism, it will have to be towed into the stargate and set off while in transit from one side to the other. The enormity of the detonation should collapse the unstable space around it, sealing the gate forever.

	The plan for the offensive emerges. The aliens have occupied and fortified all systems less than two direct jumps from Kilrah, and Confed must first break through these to introduce the anti-stargate device. Confed fleets will move to attack all alien forces around a central entry corridor, pinning them in place and allowing Midway to make a dash past them and into the Kilrah system. Her crew will be aided by not only the enhancements to their fighters, but the attachment of a powerful anti-starship weapon derived from alien technology to the carrier’s bow.

	They set out. Midway encounters only sparse resistance on her way to Kilrah; stragglers from the defeated invasion fleet who serve as little more than opportunities to test her improved weapons. The dash through the alien “picket” system is fast and furious, however: the alien forces here are very strong. A major fleet engagement unfolds around the carrier as her pilots fend off attack after attack, all the while dashing at flank speed for the jump-point to Kilrah. At last the great warship plunges in.

�

Part Two: Climax

	The alien forces guarding the stargate are extraordinary, including an awesome, sprawling dreadnought previously unseen. From its bridge the commander of the alien forces contacts the Confed forces directly, speaking in broken, apparently freshly-learned English. His words are vitriol, making it more clear than ever that these creatures are unrepentantly evil.

Midway must fight her way close enough to the stargate to launch the attack, where final plans are revealed. The massive anti-matter bomb must be towed by a shuttle, which will have to arm the detonator then flee the gate before the bomb explodes. Due to the dangerous and vital nature of that mission Admiral Blair will pilot the shuttle personally. The protagonist offers to fly as his copilot, but Blair declines, insisting that he must have a pilot of that stature leading his escort flight (whether he be a mere Lieutenant or not). Pilot X instead receives the copilot position, privately citing for the protagonist how much he will enjoy hurting the aliens that badly. It is more evident than ever that something dark and angry has stirred within him.

	After a series of missions to punch holes through the enemy defenses (including at least one to disable the dreadnought) the final gate-killer mission is launched. The protagonist must fight harder than he has ever fought to ensure the vulnerable, bomb-toting shuttle reaches its destination. The ace encountered at the relay station at last reappears, leading a squadron of aces against the mission. He can finally be killed.

Once at the stargate’s maw the shuttle and protagonist’s ship plunge in, entering a disorienting tunnel in space. A massive alien fleet (including a second dreadnought) can be seen in the distance, moving through the tunnel to relieve the beleaguered forces guarding this side of the gate. Should the armada make it through, it is clear Confed will be forced to retreat and their mission will fail.

	Unfortunately, the unstable space in the tunnel is wreaking havoc with sensor and electrical systems, and an electrical short on board the shuttle leaves it floating dead in space. It also severs its link to the arming mechanism on the detonating device. Blair frantically radios to the protagonist that the only way out is for him to shoot several cooling units on the bomb itself, causing the magnetic bottle generators to overheat and collapse the fields holding apart the matter and anti-matter. After this is accomplished there will be several seconds to gain safe distance before the detonation, but the bomb will almost certainly go off while they are still in the stargate. If the protagonist does not follow through, however, the alien reinforcements will end it all.

When the bomb finally overloads the explosion is cataclysmal. Midway watches as a great fireball spouts from the stargate’s maw, mixed with the shattered pieces of the alien armada that had been in transit. Alien destroyers and cruisers that stand close to the blast are thrown about like toys, and the disabled dreadnought is destroyed. In the wake of the eruption, space ripples and curls on itself, then clears. The gate is no more.

	Drifting amidst the roiling debris, something stirs. It is the protagonist’s fighter, the blast having propelled it from the collapsing space-time tunnel like a cannonball. It is battered and severely damaged, but intact. The pilot within is in similar condition, but manages to nurse his shattered vessel back to Midway. There he receives a welcome truly befitting a hero.

	However, the air of elation is stifled when the price of the Confed victory is learned. The shuttle carrying Admiral Blair and Pilot X cannot be found.

Epilogue

	The protagonist sits at an observation port, contemplating the fate of both his friend and the Admiral. He fingers a token Blair had given him prior to the fateful mission, one which the Heart of the Tiger himself had carried with him years before on his own run to Kilrah. It seems the price of the protagonist’s good luck was the loss of Blair’s own.

The protagonist is joined by another pilot, a woman he has grown somewhat close to over the course of the short war, and as Midway sails through the night they ponder the stars together.

�5 minutes of gameplay

Stardate 1997.

The edge of Terran Confederation Space.

Joe “Our Hero” Customer’s PC room…

It’s been a long wait since March ’96; but , at last, the data discs have arrived! Joe waits with eager anticipation as he slides the first disc into the drive bay. He sees his reader access for a brief moment, then a beautiful Wing V Graphical Menu Screen automatically appears before him. Joe carefully weighs his options, then decides that pressing the “Install” button would be the natural way to begin his adventure(there will always be time to “Explore”, see the “Readme”, “Catalog” and “Credits” later). Again, the drive begins to access, and this time a screen appears that tells Joe what he needs to use this data and if his equipment is sufficient. Since “Our Hero’s” equipment has been kept up to date, he receives confirmation that he makes the grade, and is then prompted to confirm where the data should be stored for safe keeping. After confirmation, JC now stares in amazement as the computer begins to perform video and sound system tests on its own; and, just when he thinks he might have to calibrate a joystick, the message “Install Successful, click ‘Play’ to Start WCV!” appears. That’s it? Joe can’t believe that it only took two keystrokes to grab all of the necessary data (and he pats himself on the back for that OS upgrade back in 95)! Eagerly, he now clicks “Play” on the menu screen and waits for the adventure to begin…

After viewing the most incredible Wing Commander Intro ever, JC is now ready to get down to some business. He finds himself on the deck of the TCS Catskinner, with options to go to the Rec Room, Briefing Room, and a door that says “Assembly Room”. Again, Joe pats himself for that OS upgrade, and decides to go to the Rec Room for a beer since the New Terran setup is a cakewalk compared to the old “cat killin’ ” days. Once in the Rec Room, “Our Hero” clicks on the nearest Bartender to make an order, and gets the response “I think I’d get my newly arrived butt up to the orientation meeting ASAP if I were you, Ensign! The CO doesn’t take kindly to plebes drinkin’ and stinkin’ during office hours, if you get my drift.” Of course, Joe decides this might be sound advice and quickly exits the Rec Room and passes through the “Attend Meeting” door.

Immediately, JC sees himself walk thru the enormous ship, past a flight deck absolutely teeming with activity. Numerous ships are being taken out of dry dock and prepared for battle, crew chiefs are everywhere barking orders to “men” that barely look old enough to shave; and ,when Joe C. arrives at the other end of the runway, he enters a door that says “Meeting Hall”. There, he finds himself crashing an assembly of many young officers much like himself, with a huge hulk of a man talking down to them from the front of the sparsely decorated room. “So kind of you to make time for us today, Ensign.”, says Captain Stern, “I wish we had time for a more cordial introduction, but we seem to have a rather volatile situation on our hands.” The captain then goes on to explain to all how a simple routine patrol of the Kilrathi Quarter suddenly turned into nightmare, when a never before encountered alien task force appeared in the sector. Not only were they hostile; but, before the Catskinner could reach them, they absolutely decimated the rest of the subdued cats civilization in less than 30 minutes - in front of the entire crew’s disbelieving eyes! “ I don’t know exactly what kind of fire power these bastards have at their disposal gentlemen, but expect maximum resistance” says the OC. “Since these guys are still within our reach, we need to hit them hard and decisively before they can penetrate our space and travel to more vital targets. I know that you’re all newbies around here, but the pilots you replaced were getting old and sloppy without having any ‘real’ threat on their hands. You people were selected because of your potential and prowess in the cockpit. Now it’s time to kick some ass like we did to those cats a few years back.” Stern goes on to tell all present that they are to proceed directly to their warships, and more specific flight instructions will be downloaded onboard prior to launch. JC now swiftly passes through the “Fly Mission” doorway and runs with a group of his fellow pilots onto the flight deck… Joe’s ship lifts off of the floor and penetrates the ceiling through to the Launch Tube. A new face comes across his VDU and proceeds to tell him about his mission. A large alien craft is heading directly toward a remote Terran Outpost. If it manages to beat us to the target, a large civilian population will be in jeapordy. This threat must be eliminated at all costs. Individual Squad Instructions will be available on the Nav Map. With that said, the Dragon blasts forward out of the tube in a blur of speed and light. ‘Our Hero’ now finds himself in the cockpit for the first time. He is absolutely amazed by what he sees - in the distance, what appears to be a huge ship is surrounded by hundreds of explosions and a tempest of laser blasts. JC now brings up the Nav Map and sees a graphic representation of the Engagement Area. He sees that he will be a member of “B” wing, a fighter group assigned with the task of escorting a bomber group equipped with modified torpedoes until it can deliver it’s payload. The cockpit now re-appears and the B wing Squad Leader sends the message “We’ll be taking point on this one, ladies. Stick close to your wing and keep those bastards off of our heavies at all cost. Follow Me!” Joe hits the thrusters and proceeds, his wing ‘Sparky’ off to the right in a tight formation. As the fighters close the distance to the target, it becomes even more apparent how heated the battle has become. Ships can be seen flying in every direction, explosions illuminate the cold black background of space, and the cries of those dying in their cockpit fills the airwaves. “That damn silver ball took a full payload of FFs and 3 IRs to bring down!” says one pilot. “I can’t shake this thing off me!” screams another. “How the f--- can they turn so fast?!” says a bewildered other. “Stay clear headed people - here we go!” exclaims the Squad Leader.

Joe clutches his flightstick toggles full guns and readies his FFs. As the weirdly shaped alien hulk comes into full view, several oval shaped silver ships can be seen dodging through the remnants of the last bomber assault. They seem to work on totally different principal of thrust, and the bewildered Terrans find themselves pulling every trick in the book simply trying to fire upon them(and avoid them for that matter). JC tells ’Sparky’ to form in a line abreast formation, and just as he starts to move up from a staggered position, an extremely thin missile screams between them, its thrusters reflecting on the hulls of the Dragons. Suddenly, it hits home, and Joe watches the first bomber erupt, totally engulfed in a cloud of red and blue flame. Joe can now see what fired the missile - a slightly distorted background materializes into a shiny silver ship(an effect rather like the camouflage in the movie PREDATOR, Joe thinks) directly in front of them. JC lets an FF rip and the sleek silver craft eludes the missile with what can be best described as a sidestep to the right - ending up slightly behind the Sparkster, now. Joe watches in disbelief as the ship lets loose with a weapon that emits a Radial Discharge(rings of light) that literally seem to shake Spark’s ship to pieces with one blow! Heeding the call of self preservation, Joe nails the afterburners and immediately pulls into a tight loop. As he level out, Joe can see the alien about to rip through it’s third bomber, and he sends a full salvo of IRs towards the silver ship in response. The IRs hit home, and again Joe’s mouth drops when he see that its shields are very red - but it still lives. Quickly, he pummels the ship in a hail of gun fire, and, at last, it explodes into an ocean of tiny silver shards. His satisfaction is quick lived , however, as a totally alien(and extremely eerie) voice laughs across the airwaves and exclaims, “You’ll have to do better than that, Terran!” Three new alien ships appear before him, and Joe’s screen starts to shake wildly...

�Ship design

CONFED SHIPS in WING COMMANDER 5

This file is ‘Owned’ by: Jeff Shelton

SHIP STATS

Speed: how fast a velocity can possibly be attained

Agility: potential turning radius

Acceleration: ability to increase speed, particularly in afterburner

Radar: The range at which active radar can lock onto--and in some cases identify--various

targets

ESM: (Electronic Surveillance Measures) The range at which passive sensors can detect the

presence of hostile targets, though it can not lock onto or classify them (this is always a greater range than active radar)

Shields: a combination of shield maximum strength and recharge rate (i.e., very heavy shields 	with poor recharge may rate an eight, though so too might weak shields with a very high recharge rate).

[I would like to change this to the below values]

Shield Recharge Rate: a combination of shield maximum strength and recharge rate (i.e., very heavy shields with poor recharge may rate an eight, though so too might weak shields with a very high recharge rate).

Shield Top Strength: maximum strength of the shields.]

Armor: The amount of armor protection around vital areas

Guns: Unless otherwise noted, the effectiveness of the fixed, forward-firing gun armament

against other fighters

ECM: (Electronic Counter Measures) The ability of the ship to jam or otherwise “spoof” incoming missiles, and/or interfere with the targeting abilities of turrets (rendering their fire more erratic).

Squadron: the squadron that this ship appears in.

�

FIGHTERS

F/A-105a Tigershark

Multi-Role Fighter

Missions: TARCAP, FORCAP, SEAD, BARCAP, escort, recon, light strike and light anti-ship

Speed: 7

Agility: 7

Acceleration: 7

Radar: 5

ESM: 7

Shields: 6

Armor: 4

Guns: 6

Gun # and type: 2X Laser, 2X Mass Driver

Missiles: 8X dogfight (or two dogfight, one recon pod). Also, some ARMs can be substituted.

ECM: 5

Special Equipment and abilities: The Tigershark is intended to fill a variety of roles at various times, and is therefore specialized at nothing in particular. It is most frequently used for light strike and SEAD duties, but can be effective as a fighter (particularly with external airborne-early-warning guidance to compensate for its mediocre radar set).

Its shields are of medium strength, with good (though not excellent) recharge characteristics. The Tigershark is a generally valuable supplement to the more specialized fighters in a CV’s wing, capable of filling most “gaps” as needed.

Rationale: The Tigershark is the first ship the player will fly, providing him a basis of comparison for the more capable types. Fighters like the Panther and Shrike will seem far more exciting when the player has flown similar missions in the less specialized Tigershark (that is, when they graduate up from something mediocre to something good).

�

F-110a Wasp

Interceptor

Missions: FORCAP, sometimes BARCAP

Speed: 6

Agility: 10

Acceleration: 10

Radar: 4

ESM: 4

Shields: 6

Armor: 2

Guns: 8

Gun # and type: 2X Tachyon, 2X Adjustable Mass Driver

Missiles: 4X dogfight, plus 4X anti-bomber rocket packs (discussed below)

ECM: 4

Special Equipment and abilities: The Wasp is a small point-defense fighter which serves as the inner tier of a carrier group’s defense. Lacking the range and endurance for prolonged CAP-style patrols, it is usually launched only when enemy bombers have breached the outer BARCAP and are closing on the carrier itself (in a “scramble” situation).

It is tailored to destroy enemy torpedo bombers, at which it is devastating, but it is also effective against most fighter-class targets. In addition to its traditional missile armament, it carries four “cluster-rocket” packs. These short-ranged weapons are very small missiles which ripple-fire in “swarms” of twelve or greater and are guided to their target by a laser designator in the Wasp’s nose. They are a “one-shot, one-kill” weapon usually employed against torpedo bombers from a close tailing position, and almost always result in the enemy’s instant destruction.

This ship will make use of detachable booster rockets for this craft that will get it to its destination quicker without using afterburner supply and at a faster rate than afterburner velocity.

Its thin shields recharge quickly.

Rationale: This ship will be flown early in the game, too, providing an occasional alternative to the Tigershark.

�

F-108a Panther

Space Superiority Fighter (Class B)

Missions: BARCAP, TARCAP, offensive counter-air, escort, some FORCAP, some RECON

Speed: 8

Agility: 8

Acceleration: 10

Radar: 8

ESM: 8

Shields: 6

Armor: 4

Guns: 6

Gun # and type: 1X F. Anti-missile turret, 4X Heavy Ion Cannon

Missiles: 4X long-range anti-fighter (or one recon pod), 4X dogfight

ECM: 6

Special Equipment and abilities: Usually assigned to light escort carriers, the Panther is a smaller answer to the Vampire. Though it falls short of its bigger brother in terms of long-range combat capability, its superior acceleration and maneuverability make it preferred by some pilots, who consider it a superior dogfighter.

Like the Vampire it also carries a high-rate-of-fire nose turret intended to down incoming missiles.

It also carries a sophisticated targeting computer which can lock and engage up to two fighter-class targets at once.

Its shields are lighter than the Vampire’s, but exhibit the same excellent recharge characteristics.

Rationale: The Panther would be the first specialized fighter the player would graduate up to from the Tigershark. It would be exciting and fun after the Tigershark, but still leave room for a later upgrade in the air-combat arena in the form of the Vampire.

	�

F-109a Vampire

Space Superiority Fighter (Class A)

Missions: BARCAP, TARCAP, offensive counter-air, escort, some FORCAP, some RECON

Speed: 10

Agility: 6

Acceleration: 8

Radar: 10

ESM: 8

Shields: 8

Armor: 5

Guns: 10

Gun # and type: 1X F. Anti-missile turret, 1X Fission Cannon, 2X Adjustable Spreadfire

Missiles: 8X long range anti-fighter (or 4X anti-fighter, one recon pod), four dogfight

ECM: 6

Special Equipment and abilities: Usually assigned to heavy fleet carriers, the Vampire is customized to destroy other fighters. It is equipped with a nose-mounted, high rate-of-fire turret intended to down incoming anti-fighter missiles (though it may also be manually told to target fighters instead). This enables the Vampire to engage in long-range missiles duels with other space superiority fighters with good chances of survival.

The Vampire also sports a sophisticated targeting computer system, which enables it to lock onto and engage with missiles up to four fighter-sized targets simultaneously.

Its shields are of medium strength, but exhibit a better-than-average recharge rate.

Rationale: The Vampire is a fighter the player would get late in the game--a reward for getting that far. I think the most fun in any Wing is had shooting down other fighters, and the Vampire would do this better than all others.

Additional comments: This ship could have outer nacelles that turn up and down by about 20 degrees. We would then give the Vampire much greater pitch than yaw so it would flown differently than other ships and possibly have and advantage over some enemy fighters when flown properly.

�BOMBERS

TB-81a Shrike

Torpedo Bomber (Class B)

Missions: Strike, anti-ship, anti-hangar, sometimes recon

Speed: 6

Agility: 5

Acceleration: 5

Radar: 4

ESM: 6

Shields: 6

Armor: 5

Guns: 5 (anti-fighter), 5 (anti-ship)

Gun # and type: 4X Tachyon, 1X T. Turret, 1X B. Turret, 1X R. Turret

Missiles: 4X dogfight, 2X anti-ship (or one recon pod)

ECM: 6

Special Equipment and abilities: Usually stationed on escort carriers, the Shrike is a lightened answer to the much larger Devastator. While it is not as powerful an anti-shipping platform, it is noticeably faster and more maneuverable than the TB-80, and therefore somewhat less vulnerable in the event of a fighter encounter. It enjoys the same computer targeting system as the Devastator, but not its massive plasma cannon. Rather, the Shrike carries a more conventional four-place tachyon gun armament, which, while still slower-firing than similar guns on conventional fighters, is relatively effective against most lesser-defended heavy targets (like turret mines and comm. stations). This arrangement also has the benefit of being relatively effective against fighters (at least far more so than the Devastator’s plasma cannon).

Due to it s limited torpedo load, the Shrike is most effective against naval targets of light cruiser-size and downward, but in larger groups can be employed effectively against larger targets.

The Shrike has top, bottom, and tail turrets, but lacks the Devastator’s side mounts, depending instead on overlap from the top and bottom positions to cover its flanks.

Its shields are somewhat thinner than the Devastator’s, and exhibit average recharge performance.

Rationale: The Shrike would be the first dedicated bomber the player would receive after soldiering on for a while with the Tigershark. It would represent an enormous increase in anti-shipping capability, while still leaving the more potent Devastator as something to “graduate” up to later in the game.

�

Shrike Ejection Ship stats

Sub-light Fighter

Missions: Mainly used as a survival tool

Speed: 9

Agility: 6

Acceleration: 9

Radar: 4

ESM: 8

Shields: 4

Armor: 6

Guns: 4

Gun # and type: 2X Light Tachyon

Missiles: 0

ECM: 8

Additional comments: This bomber will have the detachable sub-light fighter ejection system incorporated in this ship design.

The idea is that this bomber is very pilot friendly. This would give the player a second chance of surviving and escaping or even sometimes finishing the mission. The detachable light fighter is very fast and has decent armor but is not real high on shields. It has two forward firing light tachyon guns to give it a fighting chance against an enemy light fighter and a remote chance against a medium.

The player should be reprimanded if he detaches from an undamaged bomber just like ejecting from any other ship unless specifically instructed to do so in the mission briefing. It might add some fun to have this kind of ship change mid-mission.

It would be good if we could have the HUD change to reflect the ship change.

We would also like to see at least some aces have the ability to target the cockpit to negate this system.

�TB-80a Devastator

Torpedo Bomber (Class A)

Missions: Strike, anti-ship, anti-hangar, sometimes recon

Speed: 5

Agility: 4

Acceleration: 4

Radar: 4

ESM: 8

Shields: 8

Armor: 6

Guns: 2 (anti-fighter), 10 (anti-ship)

Gun # and type: 1X Plasma cannon, 1X T. Turret, 1X B. Turret, 1X R. Turret, 2X S. Turret

Missiles: 8X dogfight, 4X anti-ship (or two anti-ship and one recon pod)

ECM: 8

Special Equipment and abilities: Usually stationed on fleet carriers, the Devastator has a simple mission: survive long enough to destroy a big target. Its radar has limited range, and can only track (not lock) fighter-sized targets. The radar is instead specialized to detect, categorize, analyze, and track capital-ship-sized targets. It can not only target these as a whole, but target individual sub-components (engines, generators, bridges, weapons systems, etc.) and bring weapons to bear on them. Its main anti-ship armament is the torpedo.

Its single fixed gun armament, however, is a massive plasma cannon. This is essentially a smaller version of the same weapon carried by capital ships. Virtually useless against fighters (due to its very slow firing rate; about one shot every two seconds), this extremely powerful weapon can cause credible damage to starships, and is by far the platform of choice when it comes to striking heavily defended and armored targets like battleships and heavy cruisers.

Additionally, to facilitate its survival in a fighter-rich environment it carries anti-fighter turrets on its top, bottom, rear, and sides.

Its shields are extremely thick, but exhibit only average recharge characteristics.

Rationale: The Devastator is the most powerful bomber available. Like the Vampire, it gives the player something powerful to “graduate” up to at later stages of the game.

�Other Small Ship Classes

Early Warning and Control Ship (AEW/AWACS)

Speed: 6

Agility: 6

Acceleration: 6

Radar: 10

ESM: 10

Shields: 4

Armor: 2

Guns: 0

Gun # and type: None

Missiles: 0

ECM: 7

These are radar/passive surveillance spacecraft used solely to detect enemy fighters and other vessels, and relay information and orders to friendly fighters. Virtually unprotected, its pilots should do their best to stay out of enemy range. A force-multiplier without equal, capable of detecting and vectoring friendly pilots to potential targets their own weaker radars can not yet see, friendly pilots should do their best to make sure they survive.

�Search and Rescue Shuttle (SAR)/ In-flight Refueling Ship (IRS)

Speed: 5

Agility: 5

Acceleration: 4

Radar: 5

ESM: 7

Shields: 4

Armor: 4

Guns: 0

Gun # and type: None

Missiles: 0

ECM: 0

These are spacecraft dedicated to recovering downed pilots, and sometimes other objects such as data buoys, etc. They are lightly armored and shielded for use in some combat situations.

These slow moving ships are smaller than a landing craft and are dedicated to refueling and rearming fighters that must fly long missions away from their carrier.

They have no shields but are reasonably well armored. Without guns or missiles it relies heavily on having a fighter escort.

They are usually stationed at star bases but a fleet carrier can hold as many as two or three.

These ships will also be used to give the player an opportunity to save his game during a mission.

�Landing Craft

Guns # and type: 2X anti-fighter turret

Missiles: 0

Constituent parts: engines, turrets, bridge

These are shuttle-like vessels intended to carry Marines and their equipment from orbiting starships and into combat zones like starbases, boarded starships and planetary surfaces. Halfway between a fighter and a full-blown starship in size (about the same size as a corvette), they are roughly equivalent to the modern C-130 or C-17, and have atmospheric capability.

They are lightly shielded and armored, but carry a pair of turrets for self-defense against fighters, as well as a boarding system which can cut through starship bulkheads to facilitate troop insertion.

Some carriers have special accommodations for their carriage.

	

� STARSHIPS

Destroyer (DD)

Guns # and type: 2X anti-shipping ion cannon, 8X anti-fighter turret

Missiles: 12X anti-ship missiles, 2-4X anti-fighter missile turret

Constituent parts: engines, turrets, bridge, radar

With a crews of roughly 100 to 200, the destroyer is the smallest warship with truly credible offensive applications. While armor remains poor, shields are generally good.

Vessels of this class are usually armed with two anti-shipping ion cannon, as well as up to 12 large anti-ship missiles. Their anti-fighter turret armament is good, and they are the smallest warship to routinely embark anti-fighter missiles launchers. As such, they are often equipped with good radars and deployed at the perimeters of larger battle groups where they can both act as pickets and provide a credible first line of defense against incoming fighters.

�Cruiser (CA)

Guns # and type: 2X anti-shipping ion cannon, 8X anti-fighter turret, 2X Heavy anti-ship plasma cannon

Missiles: 0

Constituent parts: engines, turrets, bridge, radar

With crews of roughly 450 to 500, the heavy cruiser is the smallest warship to have heavy armor. They usually embark two ion guns, and forego anti-ship missiles entirely in favor of two heavy anti-shipping plasma cannon. These are far more effective than the ion gun, and make the heavy cruiser one of the greatest and most prevalent threats to shipping.

They are noticeably slower and less maneuverable than destroyers, but are far more dangerous in ship-on-ship encounters by virtue of their armor protection and heavy firepower.

�Transport

Guns # and type: 6-8X anti-fighter turret (light)

Missiles: 0

Constituent parts: engines, turrets, bridge

These are destroyer-sized vessels which are poor in armor, shielding, and defensive capabilities (light turrets only). They use cargo pods to convey supplies such as tanks, food, fuel and other war materiel into battle areas.

They can also be used as in-flight tankers and underway replenishment vessels.

�Fleet Carrier (CV)

Guns # and type: 16+X anti-fighter turret

Missiles: 0

Constituent parts: engines, turrets, bridge, radar, launch tubes/hangar deck

These are the largest carriers, the ships around which most naval activities center. Roughly twice as large as the average battleship, they are crewed by anywhere from 5000 to 7000, and embark roughly 250 fighters of all classes (save the lightened versions of space superiority and torpedo bomber classes, which are usually represented here by the heaviest, most capable types). While anti-fighter defenses remain excellent, these are slower and therefore more vulnerable ships than CVE’s, and are almost always supported by strong escorts.

The Midway, described below, is a new class of CV.

� Ship Description:

TCS MIDWAY

CVX 1

Length: 6000 Feet (1.17 miles)

Crew: 6000 naval personnel, marines and pilots

Armament: 16 light laser turrets

		8 medium ion cannon turrets

	 6 anti-fighter missile vertical launch installations

Shielding: Very heavy

Armor: Light

Fighter Complement: Approx. 200 fighters and support craft

Additional Complement: Equipment for two full Marine armored brigades

Additional Visible Features: Communications arrays, fighter launch tubes,

fighter recovery bays

Description:

TCS Midway is the first in a new class of Confed. “megacarriers” intended to replace the rapidly aging fleet of war-era vessels. Almost as much a mobile starbase as a conventional CV, Midway is intended to assume the roles of several carriers and Marine assault vessels at once, providing an extremely powerful presence across an entire sector where previously many starships would have been required. While impressive in its own right, this philosophy of “putting one’s eggs in one basket” is driven largely by simple economic and industrial factors: the long-term costs of building and supporting half a dozen smaller carriers within a single sector has become prohibitive.

Midway has been designed with extensive and sophisticated defenses, further reducing fleet-wide costs by minimizing her need for escort vessels (though some may nevertheless be desired to provide an anti-starship element). Her fighter complement includes three full air groups of varying capabilities (previously assigned one a piece to smaller carriers). These include several squadrons of highly specialized point-defense interceptors which greatly enhance Midway’s defensive capabilities. The starship also embarks all armored vehicles and support vessels for her two Marine expeditionary brigades.

To further lower operating costs, Midway’s design incorporates many revolutionary automated features. In particular, the traditional hangar decks of previous carriers has been replaced by an expansive fighter stowage system which runs the full length of the ship. Here fighters are stored nose-down in low-G conditions on automated “racks”, where they may be repaired and maintained without the hindrances of full gravity. When a launch is required, the rack mechanisms lower the fighters into individual launching bays where they are armed and fueled by additional automated systems and take on pilots. They are then ejected vertically through launch tubes on the bottom of the starship. (Several specially enlarged launch tubes accommodate Marine planetary assault heavy transports.) For recovery several landing bays are mounted in the ship’s stern, from which the fighters can be re-introduced directly into the stowage area. These bays also include provisions for shuttle landing, stowage, and launch.

�Questions for Each Fighter

What are the constituent parts (engines, powerplant, etc.)

How many guns/turrets does it have, and what type of guns?

Are there going to be moving parts? Which for each fighter?

What is its combat role?

How big is it?

Can it fly in an atmosphere?

What squadron(s) does it belong to?

What are its special characteristics?

Questions for Each Starship

What are the constituent parts (engines, turrets, hangar decks, docking rings, etc.)?

How big is it?

What is its combat role?

What are the types and numbers of its weapon systems?

Will it have moving parts?

Will there be special features (trenches, tunnels, special transmitters, etc.)?

Does it need a particular name or bow number?

�Alien Ships in WING COMMANDER 5

This file is ‘Owned’ by: Jeff Shelton

SHIP STATS

Speed: how fast a velocity can possibly be attained

Agility: potential turning radius

Acceleration: ability to increase speed, particularly in afterburner

Radar: The range at which active radar can lock onto--and in some cases identify--various

targets

ESM: (Electronic Surveillance Measures) The range at which passive sensors can detect the

presence of hostile targets, though it can not lock onto or classify them (this is always a greater range than active radar)

Shields: a combination of shield maximum strength and recharge rate (i.e., very heavy shields 	with poor recharge may rate an eight, though so too might weak shields with a very high recharge rate).

[I would like to change this to the below values]

Shield Recharge Rate: a combination of shield maximum strength and recharge rate (i.e., very heavy shields with poor recharge may rate an eight, though so too might weak shields with a very high recharge rate).

Shield Top Strength: maximum strength of the shields.]

Armor: The amount of armor protection around vital areas

Guns: Unless otherwise noted, the effectiveness of the fixed, forward-firing gun armament

against other fighters

ECM: (Electronic Counter Measures) The ability of the ship to jam or otherwise “spoof” incoming missiles, and/or interfere with the targeting abilities of turrets (rendering their fire more erratic).

�

Plasma Cannon Cluster

Speed: 7 (5)

Agility: 7 (5)

Acceleration: 6 (5)

Radar: 6

ESM: 7

Shields: 5

Armor: 5

Guns: 5 (8)

Gun # and type: 1X Light Plasma (1X Heavy Plasma)

Missiles: None

ECM: 5

Description:

This “ship” is actually a collection of (four to) six smaller conveyors, each equipped with a single small plasma cannon mounted at their nose. Individually they function as fighters. But they may also join together into a single larger ship, the emission points of their individual cannons touching to form a single, massive plasma cannon which is effective against starships. In this configuration they are similar to a torpedo bomber (though there is no missile armament).

[WOULD IT BE BETTER IF THEY HAD BETTER SHIELDS AS A CLUSTER, OR WOULD THAT BE A PROGRAMMING ISSUE? - bjc]

�Multi-role Cluster

Speed: 7

Agility: 7

Acceleration: 6

Radar: 6

ESM: 7

Shields: 5

Armor: 5

Guns: 5

Gun # and type: 1X Light Plasma

Missiles: None singly, but together, they tow a “Super Starship Torpedo” x1 or self-targeting intercept missiles x12

ECM: 5

Description:

Another “swarm” fighter. In this variation, four small conveyors surround a single, massive weapon. The nature of the weapon is variable. In one case the weapon is an enormous super-torpedo, which the conveyors release only once it has targeted a starship. They are then free to act as fighters and defend the weapon on its way in, hampering attempts at intercept. In a second variation, the weapon is a potent anti-fighter weapon which flies towards an enemy fighter or bomber formation then opens to release a large number of self-targeting interception missiles which bombard the group. The conveyors are then free to act as individual fighters and prosecute survivors.

�Fighter Cluster

Swarm Fighter Stats:

Speed: 7

Agility: 7

Acceleration: 8

Radar: 6

ESM: 7

Shields: 6

Armor: 5

Guns: 7

Gun # and type: 2X Alien Cannon ????

Missiles: None

ECM: 6

“NODE” Power Generator Ship Stats:

Speed: 6

Agility: 5

Acceleration: 7

Radar: 0

ESM: 0

Shields: 7

Armor: 7

Guns: 0

Gun # and type: None

Missiles: None

ECM: 0

Description:

This is a pure space superiority variation of the “swarm” fighter. A single power distribution “node ship” produces energy for up to a dozen smaller cannon-armed vessels which fly in space around it (unlike other cluster ships, never joining into a single unit). These smaller vessels function almost as free-flying turrets.

Destruction of the node ship causes a massive explosion, plus the destruction of all associated fighters.

�Shield Killer

Speed: 7

Agility: 10

Acceleration: 8

Radar: 7

ESM: 9

Shields: 4

Armor: 4

Guns: 8 (against shields only)

Gun # and type: 1X Omni-directional shield reducer

Missiles: None

ECM: 7

Description:

This is a highly specialized vessel which can produce a discharge which temporarily overloads the shield generators of a fighter and causes them to drop entirely for a short period of time. While marginally defended and relatively vulnerable to cannon fire, the vessel is saucer-like or spherical in configuration and capable of changing directions instantaneously, rendering it a very maneuverable and difficult target. As it is otherwise unarmed, this vessel almost always operates in conjunction with other fighters.

[I would like to have these guys fire a ‘pulsar’ weapon. What this would do is fly in 3space and track the player, like a missile. It would, if it hits, take out shields for a limited time, and do a little impact damage. What it is PRIMARILY designed to do is show off the light sourcing, and the 3D surround sound, as it flies by your cockpit!! - bjc]

[Basically, area-effect weapons are not easy to convey to the player, and consequently would require too much explaining. - bjc]

�Fighter Destroyer

Speed: 6

Agility: 4

Acceleration: 4

Radar: 7

ESM: 9

Shields: 8

Armor: 9

Guns: 8

Gun # and type: 4X Multi-directional laser spheres

Missiles: 10X anti-fighter

ECM: 6

Description:

Intended to lay waste entire formations of opposing fighters, this is a massive, heavily shielded and armored (but not particularly maneuverable) vessel. It is armed with several small “disco ball” weapons which emerge slowly from the hull to spray concentrated and devastating anti-fighter fire in almost any direction (though the potency of the fire decreases rapidly over range). The balls then must retract into the hull to recharge, rendering the ship temporarily vulnerable for several seconds. Additionally, the balls themselves can (and generally must) be targeted and destroyed just prior to firing, when they are in the process of rising out of their charger housings.

�Multi-role Fighter

Speed: 6

Agility: 7

Acceleration: 7

Radar: 5

ESM: 8

Shields: 5

Armor: 6

Guns: 6

Gun # and type: 4X Alien Cannon ????

Missiles: 4X anti-fighter or anti-turret

ECM: 5

Description:

This is a rather conventional, multi-purpose fighter similar to the Dralthi, Hellcat, or Tigershark. It is moderately well armed, shielded, armored, and maneuverable. It is usually employed in the anti-fighter role, though anti-turret missiles can be employed.

�Armor Killer

Speed: 7

Agility: 6

Acceleration: 6

Radar: 6

ESM: 8

Shields: 5

Armor: 5

Guns: 8 (against armor only)

Gun # and type: 1X armor destroying pulse

Missiles: None

ECM: 5

Description:

This is a very dangerous vessel which, at twenty-second intervals, releases a pulse of energy which ignores shields and damages all the armor on all enemy vessels within a certain radius (the closer one is to the armor-killer, the heavier the damage). If any are present, they must be found and destroyed quickly. Like the anti-shield ship, they are unarmed, but are not as maneuverable a target.

Later in the game, advances in Confed shield technology might diminish the effectiveness of these weapons. [I question the value of the effort bang/buck for this explanation. - bjc]

[Here’s what I propose: Change this ship to a mine-layer. We can add huge frontal offensive weapons, and little back armor. Basically, the player should be lured into following this ship, so you can get at the ‘Sweet Spot’, and while you’re hammering away at him, he’ll drop a load of mines on you. And then you’ll die! Fun!! - bjc]

�Mugger

Speed: 7

Agility: 7

Acceleration: 7

Radar: 5

ESM: 7

Shields: 0

Armor: 10

Guns: 8

Gun # and type: ?X Close proximity cutters

Missiles: None

ECM: 0

Description:

This large fighter is a brute force weapon. It has extremely powerful armaments, but they are extremely short-ranged. Its method of attack is to physically slam into a fighter, breaking through the shields and grabbing onto the hull, where it holds on and carves into its enemy with its weaponry, causing massive damage. As the weapons take time to recharge, it then disengages and withdraws to set up for another attack. Its armor is extremely thick but its shields (if it has any at all) are very thin. It carries no missiles.

[Basically, any time the player cannot see what is happening and why, it’s a bad thing for gameplay. It would require too much explaining, IMHO. - bjc If the ship just slams the shit out of the player, and he gets pushed in one vector, it will make sense that he got hit. - bjc]

�Conventional Space Superiority Fighter

Speed: 8

Agility: 8

Acceleration: 9

Radar: 6

ESM: 8

Shields: 7

Armor: 6

Guns: 7

Gun # and type: 4X Alien Cannon ????

Missiles: 6X anti-fighter or special

ECM: 7

Description:

This would be a pretty conventional fighter, with guns and missiles (possibly Thumper or other special types), which it seems should be represented. They would be rather frightening compared with the alien generic multi-role fighter, being faster, better shielded, better armored, better armed, and probably more maneuverable. Most Aces would likely fly them.

�Interceptor

Speed: 8 (4)

Agility: 4 (8)

Acceleration: 7 (5)

Radar: 7

ESM: 9

Shields: 5

Armor: 6 (4)

Guns: 0 (7)

Gun # and type: 4X Alien Cannon ????

Missiles: 8X anti-fighter

ECM: 6

Description:

This is a point-defense system for cap ships. It is a small fighter designed for slashing head-to-head engagements with heavy forward defenses and four wings which usually fold back over a single engine like flower pedals. Guns are mounted on the ends of the petals, but are useless when the wings are folded. In this configuration the ship is very, very fast but not particularly maneuverable. To attack, the ship unfolds the petals, bringing the weapons to bear for devastating forward firepower. But it slows considerably, and in this configuration the single unarmored engine (previously protected only by the folded-back petals) is dangerously exposed, making the ship extremely vulnerable to attacks from the rear.

�

Section 2 - Libraries and Tools

��Objectives of the tools group

Mission Editor

new VISUAL tool built for designers

arrange heavenly objects

place objects, assign objectives

simplified Flag programming

	e) play&debug missions inside the editor!

Gameflow Editor

connected to Mission editor

hots spots and backgrounds

	c) layout mission series flow

3) Object Importer/Customizer

EOR substitute

import Alias OBJ format files

assign detail levels, collision extents

label effect points (ie. sound, animation, etc.)

	e) playtest collisions, debris and explosions

3D Render Engine

load custom object files

transform and rasterize polygons

sample main loop

3D Sound System

Mixer = volume, pan, doppler, Dolby

volume fx (ie. audibility cones)

misc. fx (ie. hangar echo)

simple sound occlusion

�Mission Editor Overview

This editor will give designers a tool from which they will be able to plan, create, map, edit, and run the game on the target engine. It will also serve as a standard to be used by designers over the span of many more games, with full customization options for the future. The intention is for designers to spend less time coding mission data and more time ensuring the quality of the mission itself. Death to busy work!!

Summary:

The designer can put any object available in the game on the map window, while having the ability to change the object’s attributes (AI skill level, heading, direction, timing information., etc.) at any time. Also included is the ability to insert, wherever necessary, mission-specific sounds and communications messages.

It will also allow the designers to watch the battle play itself out in two dimensions, from a number of different angles, before the space-flight engine is even complete. This may include a simple Asteroids-like interface where the player can assume the identity of each ship and make sure the proper flags and triggers are set even if one of the objects in the playfield is going awry (i.e. the player is trying to fly south instead of north).

Windows:

Several windows will be needed, with the option to resize, close, reopen, minimize, and maximize each of them. Here’s a list of the ones I’ve come up with:

Map Window

This is where you see the mission map’s x,y,z layout. X and Y are laid out horizontally and vertically, while Z will be a simple re-sizing of the object’s icon. There should be hotkeys to zoom in and out on the field, as well as some buttons on somewhere on the map itself. Perhaps the map window is both a map and an information screen, with a small area to the right side of the map showing the size of the map, the objects on the map, zoom buttons, and anything else as needed. Left-clicking on an object updates its information in the Object Information Window. Double-clicking brings up a properties dialogue, allowing the user to change its values. Right clicking opens a menu (allowing typical Win ’95 stuff like New, Delete, Trigger, Special, or Properties).

Object Window

The Object Window should display a list of the current objects that are available to the mission, listed in a user-definable one-, two-, or three-column display. They should be in an intuitive order with good default values, and when they display more than one column, the additional columns should scroll independently of each other to cut back on time spent scrolling through the list. With the right mouse button, the player should be able to drag an object to a different position on the list, and with the left button, he should be able to drag an object onto the Map Window and drop it where he wants. If he holds the Ctrl- key while dragging the object, the object will snap to an interval of 1,000 meters or so, to allow perfect and uniform placement.

Variable Window

Variables are something we need to keep track of constantly, so they get their own window. It displays a list of pertinent variables (how many ships are dead, whether the princess was rescued), colored to identify their type (red for boolean, blue for integer), and their status constantly while the mission is playing out. Right-clicking here will allow new variables to be placed, default values to be assigned to variables, and variable properties and types to be changed.

Object Information

The Object Information Window will display pertinent information for an object (location, loadout, AI personality, special flags, etc.) and will update itself dynamically when the user left-clicks on a ship in the Map Window.

Others

Other possible windows include:

AI Status

Hot Spots & Triggers

Mission Recorder/Playback device

Pull-down Menus:

Done in true Windows ’95 tradition:

File

Typical File menu: New, New Series, Open, Open Series, Save, Save As, Properties, Import Map, Source Control, Print Source Code, as well as the last three or four files the user has opened.

Edit

Typical Edit menu: Undo, Redo, Cut, Copy, Paste, Select All Objects, etc.

Variable

New, List, Global Status, Search for (in other missions), Jump to (other use), etc.

PSX

This one’s obviously for the PSX version only….

Initialize, Download, Run Diagnostics, etc.

Windows

This should be exactly what it sounds like it should be: a list of all available windows, clicking on the name of one will open it….

Hot Keys:

These don’t have to be nailed down here, but in short, we stick to Win ’95 standards: Ctrl-Z for Undo, Ctrl-C,V,X for Copy, Paste, and Cut, Ctrl-Tab to swap between active windows, and so on. The rest of the hot keys need to be intuitive, such as Ctrl-I for Initialize Engine (or PSX), and can be hammered out later.

Feel free to add to or subtract from any content in here, I certainly didn’t think of everything, but there may be a thing or two valuable, and if nothing else it can serve as a template of the more specific things we will be asking for.

�Mission Editor Scripting Constructs

Script Commands

Flags

SetLocalFlag(Flagname)

IncrementLocalFlag(Flagname)		// ++

DecrementLocalFlag(Flagname)		// --

ClearLocalFlag(Flagname

SetGlobalFlag(Flagname)

IncrementGlobalFlag(Flagname)

DecrementGlobalFlag(Flagname)

ClearGlobalFlag(Flagname)

Object

Attack(TargetObject) and Attack(TargetObject, WithinRange)

MustAttack(TargetObject)					//Ignore all other enemies

PriorityAttack(TargetObject1, TargetObject2, TargetObject3)

Defend(TargetObject or Location) and Defend(TargetObject or Location, WithinRange)

PriorityDefend(TargetObject1, TargetObject2, TargetObject3)

Ignore(EnemyType) and Ignore(Target1, Target2, etc.)

Harass(TargetObject, Location)				//Attack, then lure to location

Evade(EnemyType) and Evade (TargetObject)

Patrol(Location, Location, Location, etc.) and Patrol(Location, Location…WithinRange, Speed)

Goto(Location, WithinRange) and Goto(Location, Speed) 	

MustGo (Location)	

SetWingman(TargetObject) and SetWingman(TargetObject, RelativePosition:X,Y,Z)

Follow(TargetObject)

ActivateObject(TargetObject or Area) and ActivateObject(TargetObject, RelativePosition:X,Y,Z)

DeactivateObject(ObjectName)

SetObjectPropertyFlag(ObjectFlag)

ClearObjectPropertyFlag(ObjectFlag)

JumpIn(Object, Location)

JumpOut(Object, Location)

Launch()

Land(Object) and Land(Object, BayNumber)

Dock(Object)

Undock()

SendComm(CommMovieName)			//Separate system to handle comm branching

SuppressMessages(CastMember)

PlaySfx(SfxName)

PlayMovie(MovieName)

Wait(Seconds)

Create(ObjectType, X, Y, Z) and Create(ObjectType, RelativeObject, Xoff, Yoff, Zoff)

CreateWave(GroupName) and CreateWave(GroupName, RelativeObject, Xoff, Yoff, Zoff)

Tractor(TargetObject)

SwitchCamera(NewPosition)

TestObjectPropertyFlag(ObjectFlag)

Eject()

Object Properties

Type

Ship (Many different types of ships)

NavPoint

CommandPoint

JumpPoint

Timer (A timer can have birth and Death events, so when the time expires, commands are run)

Status flags (Boolean)

VisibleInNavMap

Cloak

Baseship		//Player can only land if this bit is set

Active

Dead

Leeched

Follower 		//for Autopilot

Collision

Invunerable

HitPlayer

HitFriendly

Status flags (variables)

ShieldHits

ArmorHits

Loadout (if ShipType)

Cargo

Weapons

AI (if ShipType)

Flags

HostileToPlayer

HostileToRace1

HostileToRace2

Skill

Ace

Average

Wimp

Pilot

GenericRace1

GenericRace2

SpecificCharacter

Scripting logic

Used to compare flags and variables. Evaluate to determine which script commands run. Comparisons can include object property flags/variables, timer values, local and global mission flags.

Logical expression ? expression (script command) : conditional expression (script command)

If / else	

<,>,<=,>=, ==, !=

Events

When these conditions are checked every game loop. When the conditions are met, ScriptCommands are exectuted

Birth

When an object is created

Death

When Object dies

Range

UserDefinable Range. When the player (or some other ship) crosses these boundaries, run a ScriptCommand

User Defined (ArmorHit, ShieldHit, 80%Damaged, etc.)

When theses conditions are met, run a ScriptCommand. These can be defined using a macro that represents a combination of Logical comparisons and script commands.

Example Armor Hit:

If ([sourceObject.]ArmorHit > 0) ? expression

TimeRange

At this time (absolute mission time) run these ScriptCommands

Logic Operations

If (FlagName)

	ScriptCommand1

	ScriptCommand2

	…

else

	ScriptCommand1

	ScriptCommand2

OR

If (conditional)

	ScriptCommand1

	ScriptCommand2

	…

else

	ScriptCommand1

	ScriptCommand2

�

Editor Screen

� EMBED PBrush ���

�Preliminary file formats

EXAMPLE FILE HIERARCHY

DEVELOPMENT ENVIRONMENT (ie. no TreeFiles)

	INSTALL PATH = “c:\games\Wing5”

	c:\games\Wing5\

		[savegame]

		[data]

wc5.exe			Executable for Wing5

game.srs			Series File for Wing5

		c:\games\Wing5\savegame\

			save0001.wc5		// Note: enable Win95 double-click to launch game

			save0002.wc5

			…

		c:\games\Wing5\data\

			[gameflow]

			[sectors]

			[missions]

			[objects]

			[movies]

		c:\games\Wing5\data\gameflow

			tclaw1F.flo		static Room data

			tclaw2F.flo

			tclawR1.flo

			…

		c:\games\Wing5\data\sectors

			sectorQ1.sct		static Sector data

			sectorQ2.sct

			sectorQ3.sct

			sectorZ1.sct

			…

		c:\games\Wing5\data\missions

			misnA1.msn		Sector/Room modifications

			misnB1.msn

			misnB2.msn

			…

		c:\games\Wing5\data\objects

			[debris]

			[ships]

			dralthi.iff

			vindicat.iff

		[phenom]

				asteroid1.iff

				blackhol.iff

			…

		c:\games\Wing5\data\movies

			intro.mov

			conv1234.mov

			…

INSTALL ENVIRONMENT (ie. TreeFiles)

	c:\games\Wing5\

		[savegame]

wc5.exe

game.tre		(Files = [data], game.srs)

	EXTRA MISSIONS ENVIRONMENT (ie. add-on disc)

		c:\games\Wing5\

			[savegame]

		[data]

[smdata]

wc5.exe

game.srs

secret.srs		Series File for Secret Missions

		c:\games\Wing5\savegame\

			game0001.wc5

			sm0001.wc5		distinct save games (“id” + “%04d” + “.wc5”)

			…

		c:\games\Wing5\smdata\

			[gameflow]

			[sectors]

			[missions]

			[objects]

			[movies]

		etc.

�The SECTOR File

Overview

The purpose of a sector file is to define the static appearance and default behavior for a continuous region of space. (note: a jump point is a discontinuity in space) This definition can include the layout of stars/planets for the background, the placement of asteroid fields, placement of space stations and jump points, random encounter probabilities and any other constant data that pertains to a region of space.

Since a Mission File has the ability to supplement any and all Sector data, it is advisable to NOT keep story/scenario specific information in the sector data. (Ex. You might want to use a collection of constant sector files for an on-line persistent world where the whole universe could change from month to month. The only new files a user would need would be Mission Files.)

The separation of Sector and Mission data may seem strange for the basic Wing Commander scenario, but the added flexibility is important for a game like Privateer in which regions of space are commonly re-used.

File Naming

All game data should reside in a sub-directory off of the main game directory. A

SECTOR_FILENAME (ie. a printf format) string should be defined in the Series File. This format string will dictate where the game looks for all Sector files for that series.

Example:

// ASSUME [main game directory] IS CURRENT DIRECTORY!

char SECTOR_FILENAME[128] = “data\sectors\%s.SCT”;

// Note: this string should be configurable by the SERIES editor

struct FullName

{

char filename[128];

void set_sector_name (char *id)

// ‘id’ will normally be an 8-char identifier (null terminated)

{

sprintf(filename, SECTOR_FILENAME, id);

}

};

Format

The Sector File is an IFF format data file whose outermost form name is “SECT”. This form is simple a wrapper for a LibTools-standard property list file. Sequential chunks of user-definable data specific to sectors.

Example: “sectorK9.sct”

	FORM “SECT”

	{

		CHUNK “NAME”

		{

			“Gamma Quad”

		}

		FORM “PROP”		// object property list

		{

			FORM “OBJ”

			{

				CHUNK “BASE”

				{

					x,y,z

					frame

					OBJTYPE_JUMP

				}

				CHUNK “APPR”

				{

					“stargate”

				}

				CHUNK “JUMP”

				{

					“Gamma 1”		// this point name

					“sector-z1”		// destination sector

					“Zeta 2”			// destination gate

				}

				CHUNK “NEAR”

				{

					FILTER_OBJECTS

					100m

					“lightning”		//when object is within 100m animate lightning

				}

			}

			FORM “OBJ”

			{

				CHUNK “BASE”

				{

					x,y,z

					frame

					OBJTYPE_SHIP

				}

				CHUNK “APPR”

				{

					“dralthi”

				}

			}

			FORM “OBJ”

			{

				CHUNK “BASE”

				{

					x,y,z

					frame

					OBJTYPE_AREA

				}

				FORM “FILL”	// a random field of objects

				{

					CHUNK “SPHR”		// what is the shape of the asteroid field

					{

						250 km radius

					}

					CHUNK “DENS”	// what is the density for filling the field with objects

					{

						0.05 objects per cubic-meter

					}

					CHUNK “PROB”	// probability of placing object

					{

						50%, “asteroid0”

					}

					CHUNK “PROB”	// probability of placing object

					{

						25%, “asteroid1”

					}

					CHUNK “PROB”	// probability of placing object

					{

						25%, “asteroid2”

					}

				}

				FORM “OBJ”

				{

					// this child object would be relative to the asteroid field

				}

			}

		} // PROP

	}

NOTE: this file is depicted in MIFF format for textual clarity…do not to be mistaken: editing and construction will be performed with an editor with a complete visual interface

�The MISSION File

Overview

The purpose of a Mission File file is to define temporary scenario changes for all elements of the game environment. This definition will include new objects and behaviors for sectors, new hotspots and conversations for gameflow rooms and any other data modifications the current state of the story needs to affect.

Essentially the mission data is a list of modifications to make to the normally static regions the player passes through. The game engine should allow multiple missions to be active. When the game requests static data for a location it should also ask the active Mission(s) for any extra information about a location.

For example: a single Mission File “test.msn” could contain a list of objects for “sectorB1.sct” (ie. ships, navpoints, programs) and a list of objects for “sectorZ2.sct” and a list of objects for “tigrclaw.flo” (ie. hotspots, sprites, animations, doorways, conversations). When the player enters “sectorB1” it would load the static data from the Sector File and then add objects from “test.msn” to the active scenario. If the player were then to land on the Tiger’s Claw the game would load the static data from the Gameflow File and then add objects from “test.msn” to modify the rooms.

File Naming

All game data should reside in a sub-directory off of the main game directory. A

MISSION_FILENAME (ie. a printf format) string should be defined in the Series File. This format string will dictate where the game looks for all mission files for that series.

Example:

// ASSUME [main game directory] IS CURRENT DIRECTORY!

char MISSION_FILENAME[128] = “data\missions\%s.MSN”;

// Note: this string should be configurable by the SERIES editor

struct FullName

{

char filename[128];

void set_mission_name (char *id)

// ‘id’ will normally be an 8-char identifier (null terminated)

{

sprintf(filename, MISSION_FILENAME, id);

}

};

Format

The Mission File is an IFF format data file whose outermost form name is “MISN”. This form is simply a wrapper for a LibTools-standard property list. The contents are a sequential tree list of user-definable data blocks.

FORM “MISN”

{

	CHUNK “FLAG”		// local flags with default values

	{

		dword 0,0,0,0,0,0,0,0

	}

	FORM “MODS”			// modifications for SECTOR file

	{

		CHUNK “FILE”

		{

			string “data\sectors\sector-j1.sct”

		}

		FORM “PROP”		// property list of objects to add to sector

		{

			// programs, nav points, jump gates, objects

			…

		}

	}

	FORM “MODS”			// another SECTOR that the mission affects

	{

		CHUNK “FILE”

		{

			string “smdata\sector\sector-j1.sct”

			// Note: example of a “Secret Missions” disk scenario filename

		}

		FORM “PROP”

		{

			…

		}

	}

	FORM “MODS”

	{

		CHUNK “FILE”

		{

			string “data\gameflow\tigerclw.flo”

		}

		FORM “PROP”		// object list

		{

			// programs, nav points, jump gates, objects

			…

		}

	}

}

NOTE: this file is depicted in MIFF format for textual clarity…do not to be mistaken: editing and construction will be performed with an editor with a complete visual interface

�The SERIES File

Overview

The purpose of a Series File is to define the presentation and connection of missions as dictated by the story. This definition will include a list of global flags and their default values and a collection of scripts that activate missions, launch movies, modify flags and anything else that serves to sequence the player through the game story.

For Example: a series file “MancMsns.SRS” might contain a BIRTH program that plays an intro movie, activates missions A1 and A2 and places the player in Starbase X Room#4. The UPDATE program might wait for A1 and A2 to be completed before playing a travel movie and activating mission B1. The DEATH program for the series would play a win/lose movie and scroll the credits finally dumping back to the title sequence.

File Naming

Series Files are the root file for a game scenario. All other data files are referenced through the contents of the series data. For this reason, all Series Files must reside in a fixed location for the executable to access. The main game directory is a sensible place to keep series files.

Example:

// ASSUME [main game directory] IS CURRENT DIRECTORY!

char SERIES_FILENAME[128] = “%s.SRS”;

struct FullName

{

char filename[128];

void set_series_name (char *id)

// ‘id’ will normally be an 8-char identifier (null terminated)

{

sprintf(filename, SERIES_FILENAME, id);

}

};

Format

The Series File is an IFF format data file whose outermost form name is “SERS”. This form is simply a wrapper for a LibTools-standard property list. The contents are a sequential tree list of user-definable data blocks.

	FORM “SERS”

	{

		FORM PATH

		{

			CHUNK MISN

			{

				string “data\missions\%s.msn”		// sprintf(id) format string

			}

			CHUNK SECT

			{

				string “data\sectors\%s.sct”		// sprintf(id) format string

			}

			CHUNK FLOW

			{

				string “data\gameflow\%s.flo”		// sprintf(id) format string

			}�			}

		CHUNK “FLAG”			// global flags

		{

			0,100,2,17,0,0,0,0,0,1,0,0,0,0

		}

		CHUNK “BEGN”			// birth program

		{

			PlayMovie “Intro”

			ActivateEvent “A-series”

			GameFlow “TigersClaw”,1

		}

		CHUNK “UPDT”			// update program

		{

			if (Global_Sword_Found)

				ActivateMission “misn-x”

			if (Global_Lose_Game)

				PlayMovie “TheEnd”

				Jump “Title”

		}

		FORM “EVNT”

		{

			CHUNK “NAME”

			{

				EVENT_INACTIVE

				string “A-series”

			}

			CHUNK “BEGN”

			{

				ActivateMission “misn-a1”

				ActivateMission “misn-a2”

				ActivateMission “misn-a3”

			}

			CHUNK “UPDT”

			{

				if (Global_a2_complete)

					DeactivateEvent “A-series”

					ActivateEvent “B-series”

				

			}

			CHUNK “END”

			{

				DeactivateMission “misn-1”

				DeactivateMission “misn-2”

				DeactivateMission “misn-3”

			}

		}

		FORM “EVNT”

		{

			CHUNK “NAME”

			{

				EVENT_INACTIVE

				string “B-series”

			}

			…

		}

		FORM “MISN”

		{

			CHUNK “FILE”

			{

				string “misn-a1”

			}

			CHUNK “FLAG”

			{	

				0,0,0,0

			}

			FORM “SECT”

			{

				CHUNK “NAME”

				{

					“Gamma Quad”

				}

				FORM “OBJS”

				{

				}

			}

			CHUNK “LINK”

			{

				if (OnComplete)

					Deactivate “misn-a1”

					Activate “misn-b2”

			}

		}

	}

NOTE: this file is depicted in MIFF format for textual clarity…do not to be mistaken: editing and construction will be performed with an editor with a complete visual interface

�The GAMEFLOW File

Overview

The purpose of a Gameflow File file is to define static point and click surfaces. This definition will include hotspots, sprites, animations, music etc.

File Naming

All game data should reside in a sub-directory off of the main game directory. A

GAMEFLOW_FILENAME (ie. a printf format) string should be defined in the Series File. This format string will dictate where the game looks for all Gameflow files for that series.

Example:

// ASSUME [main game directory] IS CURRENT DIRECTORY!

char GAMEFLOW_FILENAME[128] = “data\gameflow\%s.FLO”;

// Note: this string should be configurable by the SERIES editor

struct FullName

{

char filename[128];

void set_gameflow_name (char *id)

// ‘id’ will normally be an 8-char identifier (null terminated)

{

sprintf(filename, GAMEFLOW_FILENAME, id);

}

};

Format

The Gameflow File is an IFF format data file whose outermost form name is “FLOW”. This form is simply a wrapper for a LibTools-standard property list. The contents are a sequential tree list of user-definable data blocks.

FORM “FLOW”

{

	CHUNK “NAME”

	{

		“Tiger’s Claw”

	}

	FORM “HOTS” // example

	{

		CHUNK “NGON”

		{

x,y, x,y, x,y, x,y

				}

CHUNK “SPRT”

{

	“data\hobbes.spr”

}

				CHUNK “OVER”	// ie. OnMouseOver()

				{

					ANIM, +

TEXT, IDT_GO_TO_BARRACKS

}

CHUNK “LCLK”	// ie. OnLBtnClick()

{

DOOR = “room2.flo”�}

}

	FORM “PROP”			// object property list

	{

		// hotspots, sprites, animations, conversations, etc.

…

}

}

NOTE: this file is depicted in MIFF format for textual clarity…do not to be mistaken: editing and construction will be performed with an editor with a complete visual interface

�

Section 3 - Programming

��Technical Features

Win95 Native Application

Direct Draw and windowed modes

Hardware acceleration where available

Next Generation Render Engine

640 x 480 x 16 bit

Articulated and detachable child objects

Ambient, diffuse, and specular illumination

Materials modeling

Flat and Gouraud shading

Multiple light sources

Selectable face textures (i.e. damage textures, ship insignia, etc.)

Immense, highly detailed capital ships and large structures

Scaleable rendering

Spline path scripted cameras

Advanced Mission System

Graphical tool for mission layout and scripting

Mission language for complex missions

Dynamic briefings / debriefings

Advanced Artificial Intelligence

Tightly integrated with mission system

AI to AI communications

AI scheduler

Physics System

Force effects

Particle system

Conservation of momentum

Enhanced flight dynamics

Advanced Sound System

Streamed digital music

Real time Dolby surround encoding

Doppler effect

Sound occlusion

VCR Playback

Player controlled recording and playback of missions

Highlight reels for debriefings

New Cockpit Systems

New cockpit displays

Configurable MFD’s

�Technical Issues

New Platforms

Win95 and PSX represent new technologies. Wing 5 will be the first ‘ground-up’ development effort on these platforms to come out of Origin. The related shift in development tools and paradigms may cause unpredictable challenges.

Simultaneous Development

Wing 5 will follow an unprecedented simultaneous development schedule. All programmers will be responsible for writing and testing code on both platforms. This will have a “2 games for the price of 1 ½” effect. While the perceived ship date for one game will be later, two complete games will be produced in a smaller amount of time and resources.

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �1� - Development time lines

The above figure represents traditional PC and PSX development cycles, where the PC team begins work, followed by a separate PSX team beginning the port process. Compare this with the simultaneous time line which splits the difference.

16 Bit Color

Wing Commander V is being developed to run in 640 x 480 x 16 bit color mode. We will have to be concerned about what percentage of machines that will be out in the market will be able to perform acceptably at this resolution and bit depth.

Direct Draw

Currently there are video cards on the market that have difficulties working with Direct Draw (for example, the Diamond Stealth 64 3000 series). Will this be an issue at the time of release?

StretchDIBits

One idea for speeding up render time for slower machines is to render the scene in a lower resolution (say 320 x 240) and stretch blit the image to 640 x 480. This works well for video cards with hardware accelerated stretch blits. However, for video cards that do not have this feature, the stretch blit will actually slow the game down. Currently, it is not known how many, or even which cards support this stretch blit in hardware.

Capital Ships

Rendering of capital ships is the big new technology of Wing Commander V. This will involve relatively complex modeling and occlusion models. Since this is entirely a new technological development, it is very difficult to accurately estimate the programming time line.

Networking

Adding network support to Wing Commander V will undoubtedly increase the complexity of the code. Network software is almost always more complex than initially thought. Network support will greatly add to the programming as well as testing timelines.

�Render System Overview

Abstract

The Wing Commander V render system will be entirely new technology. The engine will feature 16 bit color, lighting effects, articulated child objects, and immense capital ships.

Description

General

Pipeline architecture allows use of 3D hardware accelerators

Improved depth sorting (dynamic BSP trees)

640 x 480 x 16 bit

Articulated and detachable child objects (i.e. rotating turrets, exploding objects, etc.)

2-3 giant objects, 25-30 smaller objects, plus bolts, missiles, etc.

Average frame rate: 20+ FPS

Minimum frame rate: 10 FPS

Scaleable render system

Lighting Effects

Ambient, diffuse, and specular illumination

Flat and Gouraud shading

Depth cueing / hazing

Simple light occlusion (i.e. capital ship shadows, etc.)

Multiple directional lights

Multiple point lights

Lens flare (?)

Texture Mapping

Affine and perspective corrected

Animating textures

“Decals”, or selectable textures for individual faces (i.e. damage textures, ship insignia, etc.)

Shared textures

Material Information

Ambient coefficient: Ka

Diffuse coefficient: Kd

Specular coefficient: Ks

Giant Objects

Immense, irregularly shaped objects

Increasing levels of surface detail

High detail surfaces for close fly-bys

Destructible child objects on surface

Occlude light sources

�

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �2� - Render Flowchart

�Render World

For each Camera View in the game, this process will draw on Screen all the Objects seen by the Camera.

Is Object Visible ?

This will tell us if an Object is in the current Camera's field of View.

(Occlusion ?)

Determine Detail Level.

The Detail Level of an Object depends upon its distance from the Camera. The further an Object is from the Camera, the lower its Detail Level will be.

Add Object to visible Mesh list.

Any Children ?

Child Objects such as Gun Turrets, Radar Dishes etc., are also checked for visibility (Occlusion ?) and Detail Levels. Some Detail Levels of Objects may result in the removal of Child Objects.

Sort Visible Mesh List.

A first, simple (Binary) Partition of Camera Space. This is a quick and "simple" first process of the list of visible Objects. Most Objects which are not overlapping will be recognised as such during this process, leaving only relatively few Objects to be considered later.

Begin Traverse Mesh List.

Does Mesh Overlap Next Mesh ?

This is a more detailed look at the Camera Space. Further (Binary) Partitioning of the Camera Space is used to find Objects that overlap.

Merge BSP Trees.

This involves the construction of one (multi-Object) BSP Tree from two or more (single-Object) BSP Trees. This will allow the correct drawing of all the Polygons of individual overlapping Objects.

Add BSP Polygons to Display List.

This involves traversing a BSP Tree and extracting the information about each Polygon. The structure of the BSP Tree is such that these Polygons are ordered correctly and can be fed directly into the Display List.

Render Display List.

This Hardware-specific process is the stage where Polygons are drawn onto the Screen, or onto a Background Buffer ready for Display.

�3D Application Programmer’s Interface (API)

//---

//

//		OBJECT.H

//

//		Wing Commander 5

//		Copyright (c) 1996 by Origin Systems, Inc.

//

//		Created 7/3/96, Pete Shelus

//

//---

#ifndef OBJECT_H

#define OBJECT_H

//---

class Object

{

	public:

		// Translation

		void move(Vector translate);

		void set_position(Vector position);

		const Vector *get_position(void);

		// Rotation

		void rotate(Real yaw, Real pitch, Real roll);

		void rotate_about(Vector axis, Real angle);

		void set_orientation(Frame *frame);

		const Frame *get_orientation(void);

		// Parent / child object stuff

		void set_parent(Object *obj);

		Object *get_parent(void);

		Object *get_root(void);

		

		void attach_child(Object obj);

		void detach_child(int32 index);

		int32 get_num_children(void);

		Object *get_child_object(int32 index);

		// Appearance stuff

		void update(void);

};

//---

#endif // OBJECT_H

�//---

//

//		CAMERA.H

//

//		Wing Commander 5

//		Copyright (c) 1996 by Origin Systems, Inc.

//

//		Created 7/3/96, Pete Shelus

//

//---

#ifndef CAMERA_H

#define CAMERA_H

//---

#include "object.h"

struct Viewport;

class Scene;

typedef struct _RGB

{

	char	r;

	char	g;

	char	b;

	char	a;

} RGB;

class Camera : public Object

{

	public:

		// Activation stuff

		void activate(void);

		void deactivate(void);

		boolean is_active(void);

				

		// View frustrum stuff

		void set_fov(Real angle);	// horizontal view angle, assumes 4:3 aspect ratio

		Real get_fov(void);

		void set_far_clip(Real far_clip);

		void set_near_clip(Real near_clip);

		Real get_far_clip(void);

		Real get_near_clip(void);

		// Background stuff

		void set_background_color(RGB color);

		RGB get_background_color(void);

		// Viewport stuff

		void set_viewport(Viewport *vport);

		Viewport *get_viewport(void);

		void clear_viewport(void);

		// Scene stuff

		void add_scene(Scene *scene);

		void remove_scene(Scene *scene);

		// Filter stuff

		void set_filter_color(RGB color);

		RGB get_filter_color(void);

		void look_at(Vector point);

		boolean in_view(Object *obj);

		void render(void);

};

//---

#endif // CAMERA_H

�//---

//

//		SCENE.H

//

//		Wing Commander 5

//		Copyright (c) 1996 by Origin Systems, Inc.

//

//		Created 7/8/96, Pete Shelus

//

//---

#ifndef SCENE_H

#define SCENE_H

//---

class Object;

class Scene

{

	public:

		int32 get_num_objects(void);

		void set_priority(int32 pri);

		int32 get_priority(void);

		

		void add_object(Object *obj);

		void remove_object(Object *obj);

};

//---

#endif // SCENE_H�

Physics Model

Abstract

Wing Commander V will implement a much more realistic physics model than has existed in previous Wing Commander games. This advanced model will allow the game to present a much more dynamic and interactive universe to the player. Ships will take damage from near by blasts and explosions, missile impacts will spin and toss spacecraft, explosions will expand in true 3D, and ship to ship collisions will be properly resolved. However, it should be noted that in cases where fun vs. realism come into play, fun will always take precedence.

Description

Force Effects

The Wing Commander universe will follow Newton’s law F = ma. Every object will be assigned a mass and will contain a force vector that represents the summation of all forces acting on the center of mass of the object. Therefore, forces such as impacts, gun recoils, and explosions in close proximity will apply a force to an object generating an acceleration of F/m. Torque caused by forces not directed entirely at the center of mass will also be calculated and applied to objects.

Particle Systems

Explosions will be generated three dimensionally in real-time rather than using static flat bitmaps. The particle system will give the explosion effect depth as well as allow each explosion to look unique. An example of this technique can be seen in Darklight.

Rotation and Translation

Every object will have associated with it a translational acceleration and velocity as well as a rotational acceleration and velocity. Each object will be assigned a maximum translational velocity and acceleration and a maximum rotational velocity and acceleration. These maximums represent the maximum rates at which the craft and propel itself, not the maximums for external forces.

Collision Resolution

Collisions in Wing Commander V will be resolved via a spherical collision model. In the case of a collision, the precise time of impact will be calculated. Proper collision dynamics for spheres will be calculated, and the colliding objects will have their position and velocity vectors appropriately altered.

�Communications

Abstract

The communications system will allow the flow of information in the form of scripted in flight conversations, player commands, taunts, and AI to AI communications.

Description

The communications systems for Wing Commander V will be tightly integrated with the user interface, mission system, as well as the artificial intelligence system. The player will be able to send commands to his wingman, taunt the enemy, ask for help, or just contact ships in the area. The mission system will be able to send scripted messages at predetermined times. The most advanced feature will be the ability for AI pilots to talk to one another.

Communications System

Every space ship will be equipped with a communications system capable of sending and receiving messages. The system will have a single slot for outgoing messages, and a priority queue for incoming messages.

Having only a single slot for outgoing messages means that a pilot can send only one message at a time. In other words, the pilot must wait for their message to have been sent (the amount of time it takes to speak the message) before another message can be sent.

The priority queue of incoming messages will facilitate the receipt of messages in the correct order. For instance, if a pilot sends a message to another pilot needing a reply, the reply message will be of very high priority so that it is played promptly. Messages such a taunts are of extremely low priority, and if the queue fills up, they will be discarded when higher priority messages are received. Scripted messages would be of the highest priority, and will override all other message types.

Scripted Communication

The mission system will be capable of sending scripted messages to various ships at certain times. This will allow the mission designers to connect mission events to communications messages. For example, if a troop transport full of marines docks with an enemy base, a communication from that transport can be sent, thus heightening the realism of the game.

Taunts

Wing Commander V will expand the concept of wingman taunts. The player (as well as all the AI pilots) will be able to send a taunt message to their target. In the case of a message sent to an AI pilot, the AI system will assess the situation and determine whether or not the taunt makes the AI pilot angry. If sufficiently angered, an AI pilot will abandon its mission and pursue the pilot doing the taunting.

AI to AI Communication

This is a new introduction to the Wing Commander universe. AI pilots will now have the ability to communicate with all other pilots, not just the player. This will greatly expand the capabilities of the AI system. An enemy AI pilot can now rally other enemy ships to fight with it. Enemies can taunt the player’s wingman, and cause him to break formation and disobey the player. AI pilots can request aid from specific ships.

�Weapons System

Abstract

A ship’s weapons system controls all projectile launchers (guns, missiles, countermeasures, and turrets), as well as ammunition and energy usage.

Description

Guns

The ship’s gun list is arranged as a list of gun “arrays”. Each of these arrays contain some number of a single gun type. Each gun type holds information specific to the performance of that type of gun. Guns in an individual array can get configured to fire individually, or simultaneously. The gun system allows the pilot to select an active gun array, or to activate all guns (full guns).

Gun Info

This is the structure that defines a particular type of gun. This contains the name of the gun, the amount of energy needed to fire a single gun of this type, the delay time between firings, and the amount of damage this gun type inflicts. This will be a shared structure, so every gun array of the same type will refer to a single GunInfo structure.

Gun Array

This structure holds position and orientation information about all of the guns of one type on a ship. In addition to this, it keeps track of which gun in the array is the next one to be fired for non-linked firing.

Gun List

This is a list of all gun arrays on a ship. This structure keeps track of whether the player has selected a particular gun array, or full guns. It also keeps track of whether the guns are to fire linked or not, as well as the amount of delay to use between firings.

Targeting

Advanced targeting systems will employ a position prediction (ITTS) for gun shots. This will estimate where the target will be located by the time a shot fired will reach the ship.

Missiles

Each fighter is equipped with a number of hard points. Each hard point can hold a certain number and certain types of missiles. The pilot selects the currently active hard point in order to specify which missile to fire next.

Hard Points

A hard point can be classified as being either heavy or light. Light hard points can hold only light missiles. Heavy hard points can hold either heavy or light missiles. Each hard point has associated with it a position (relative to the ship), the type of hard point (heavy or light), the type of missile on that hard point, and the number of missiles.

Hard Point List

This is the list of all missile hard points on a ship. This structure keeps track of which hard point the pilot has selected.

Targeting

Missile targeting includes aspect and time. Certain missiles are rear aspect missile which must be pointed at the rear of the target in order to fire. Others may be fired head on to the target. In addition to this, missile targeting features lock timers. Each missile requires a certain amount of time to be able to

Countermeasures

All that is recorded is the number (and type??) of countermeasures on the ship.

Turrets

All capital ships and some fighters are equipped with turrets. These turrets rotate and fire independent of pilot input (computer controlled). Turrets are equipped with a single gun type. Turrets are tied into the weapons pool.

Turret Info

Turret info consists of orientation (relative to the ship to which it’s attached) and gun type.

Turret List

This is the list of all turrets on a ship. If the player’s fighter is equipped with turrets, he can change views in order to take over firing and aiming control of the turret.

�VCR Playback System

Abstract

Real time 3d systems are so attractive as a gaming environment because they allow both the creator as well as the player a huge amount of control over the existing world which is designed for the game. Part of this control is the ability to play back previous events that occurred in the world in exacting detail with very little overhead. This ability allows for many interesting features and special effects which will go quite far in enhancing the players appreciation of our proposed gaming experience.

Description

In order for this system to be implemented correctly, the game would have to be designed from the beginning with this feature in mind. This design issue would also facilitate the game to have a network option, as both features share many similar technical requirements. To best describe what would be needed for a VCR system, we will list what will be required in a VCR tape file:

Initial Random # seed (we need to be able to sync. all random numbers on all machines).

Initial states of ALL controllable objects. Controllable object being defined as any object which can change its own behavior after its initial state (ex, modify its own velocity or rotational vector, or fire a weapon, send a message, etc.).

Amount of time this frame took to complete.

All modifiers of every object’s state packet. This would be a simple delta bit packet for each object, if a change in state occurred for that object. We will want to optimize the packet size for each object so as to minimize the amount of memory required per frame (this can add up very quickly).

Repeat steps 3 & 4 for every frame on the tape.

Example of an objects control bit packet

struct simple_control_pack

{

	pitch		:8

	roll		:8

	yaw		:8

	throttle		:6

	afterburn	:1

	fire_gun		:1

	fire_missile	:1

	drop_decoy	:1	

};

Where this system will be used is yet to be determined, but below are several possibilities of what we have come up with so far.

Possible Uses:

At the end of a mission, the player could review his mission with standard VCR controls, as well as switch the viewing perspective.

During the mission debriefing, we could have the highlights of the just flown mission playing back in the background with a voice over.

We could use this option as general background filler behind option screens, or as examples of what needs to be done during mission briefings or training sessions.

The player could review a mission from his perspective, his wingman’s perspective, the perspective from a drop camera, or even from the perspective of the enemy.

The credits could roll over some previously recorded space combat.

This would be an excellent option for in-store and show floor demos.

The mechanics of a VCR system would also aid in the implementation of a networking system.

�HUD : Multi-Function Display (MFD)

Abstract

There are many complex systems on a Wing Commander ship, whether it is a fighter or a carrier. As Wing Commander has grown more complex in story and production, so has the user interface required to interact with these elements. In Wing Commander V, the in-flight menus and multi-function displays will relate only relevant information in an interface which is simple to understand. By using an intuitive combination of cursor keys, hotkeys and simple menu navigation, it will be possible for the player to use all the more complex features of the game without needing to stare at the reference card.

Description

A multi-function display will be a small window, similar to previous Wing Commanders, where the Left VDU in the bottom left corner of the HUD contained different types of information. In Wing Commander V there will be multiple areas of the HUD that can hold this information, and each area will be able to hold each kind of information. The location and the function of each MFD can be changed with a minimum of keystrokes, and any or all of these displays can also be put away to free up space in the viewing area.

Power System MFD

The player’s ship needs to regulate power to its different systems with a minimum of player involvement. As a result, the Power Display looks like previous Wing Commanders, with the percentage of generated power allocated to each complex system represented as a line between zero and one hundred percent. Whereas before the systems (Weapons, Shields, Engine, and Repair) were each allocated twenty-five percent of the ship’s overall power by default, now all but Repair get one-third of the power. This changes when a system is damaged.

Damage to a particular system causes that system to flash, suggesting that the player shut down the power to that system to let damage control take over. Damage control then takes the leftover power and uses it to repair the system, where it then returns the power flow back to the repaired system. This happens automatically unless the player opts to Allocate Power Manually, part of the in-flight options.

Shields and Armor

At first glance, the Shields and Armor Display looks the same as in a previous Wing Commander. It shows the level of shields and armor graphically, updating itself dynamically when the status of one or the other changes. However, Wing Commander V will allow the player flexibility he has never had before: he can let it Regulate Shield Power Automatically, or he can concentrate shield power around one area of the ship. For example, heading towards a carrier in a bomber, extreme flak and turret lasers are anticipated. The player pushes one or two buttons, and shield power is concentrated on the front, taking a little away from the sides and rear. This is related in the as different bands of color, indicating shield strength and weakness.

Weapons

The Weapons MFD functions, essentially, like previous Wing Commanders, showing which weapons are in use, which have been destroyed, and which have been depleted (missiles, Stormfire cannon, etc.). It is an outline of the player’s ship, with the various weapons mounted on their hardpoints, with the weapons in use highlighted.

�Damage/Repair

The Damage/Repair MFD lists the systems damaged, as well as the amount of damage (percentage) they have taken. The systems are also color coded to reflect the seriousness of the damage, and the amount of time it will take to repair (green = good, yellow = moderate, red = beyond repair). The repair system will automatically prioritize the repair schedule for all damaged systems.

Radar and Targeting Display

Should be able to detect hostile targets without the ability to identify or lock onto them at ranges longer than standard radar. Once closer to the target, the radar will act as in previous Wing Commanders.

Communications

The Communications VDU at first displays a numbered list of receivers, if there are any, and color codes them according to their alignment (green for friendly, red for enemy, etc.). To select a receiver, the player either cycles through the list with cursor keys, or he can press the number that appears before the name of the receiver. After selecting a receiver, the numbered list of communications options are presented (break and attack, form on my wing, etc.), and the player again chooses the option via cursor or numeric keys. The main change to the communications VDU is not so much how it looks, but how the player interacts with it. It offers the same keys as in previous games, but can also be used with cursor keys. This allows the player to communicate effectively with a minimum of hand movement.

Mission Clock

Starts at zero and counts off seconds, minutes and hours as soon as the mission starts. Players will be able to compare mission times in discussions on the Internet. Some missions may end up being very time oriented and a constant visible clock in the cockpit could aid a player in making strategic decisions. Additionally, a countdown timer might be added for timing local events within the mission.

�

�

Figure � SEQ Figure * ARABIC �3� - Sample cockpit layout

�

Artificial Intelligence

Abstract

 Artificial Intelligence is the system that controls the movements, selection of movements, and even the scheduling of movements of ships in the Wing Commander universe. Each set of instructions provided to the designers will be associated with one or many routines that comprises one movement, or maneuver.

Description

There are two primary systems involved with the artificial intelligence engine: heuristic decisions and maneuvers. Maneuvers are the individual components that comprise of the ship’s AI programming, like HARASS or FLY_TO; they are the routines a ship will follow when attempting to accomplish something specific. Heuristic decisions is the overall structuring that eventually calls a maneuver for a ship, but is mostly responsible for deciding the order, sometimes whether to skip portions of the programming, or to introduce known behaviors into a ship’s program to make it more intelligent. Heuristics might include a ship fighting back or fleeing when another ship attacks it, even though the program doesn’t explicitly state this case; also included is a scheduler that minimizes the frequency of AI calls to ships that are not requiring immediate attention, and emulating smarter, and dumber, opponents by affecting their reaction times.

Scheduling

 There are multiple tiers in the scheduler. Each tier should be a logical breakdown of the ships. Several possible solutions for the tier breakdowns exist--the trick is to find the optimal solution, which is as of yet undetermined. Here follows the first pass at a possible scheduling system with several tiers and priorities.

Tier�Priority�Ship Type��1�Immediate�Within 3000m of player��2�High�Any other ship engaged in combat��3�Medium�Ordinary update level��4�Low�Capital Ships, etc.��

Each ship has an update period attached to its entry in the tier list. When that period has expired, that ship gets an update. Each tier is organized such that the next ship to require attention is at the head of the list, much like a priority queue. Often, no update will be required and an entire tier will not be visited by the AI system. Occasionally, multiple ships will require update at the same time, and this is handled fine with the system.

 The scheduler is not used to maintain a ship’s maneuver situation. It is merely used to schedule changes in maneuvers, so it is a high-level abstraction from the frame-to-frame operations of the maneuver system.

Heuristics

 This system is responsible for reading the program stack for an AI device. The specifications for the heuristics system is not known yet and will be expanded as new behaviors are announced by the designers. Expected behaviors to be implemented include fighting, fleeing, radioing for help, taunting, and others. It should also be capable of pre-empting individual instructions in AI and proceeding to the next objective if required. It should also be able to evaluate and interpret conditional statements and track variables within the world, but not within individual maneuvers.

 Heuristics systems will go through continuous improvement for the duration of the project and will not be “complete” until signed off. Managing this library is probably a full-time job for some lucky person.

Maneuvers

 All instructions that are processed and executed in the heuristics system will be resolved into maneuver routines. Individual routines may be very simple or very complex, depending on the instruction and frequency of use in code. Typically, maneuvers execute in a very repeatable, predictable manner. They operate on the current ship state and make no predictions or evaluations on future or past events, except where it is a function of the command itself. Each maneuver has a scratch pad space in the ship’s data region where it can keep track of things from frame to frame, but for the most part should be able to provide necessary adjustments to the ship data based solely on the ship data itself. For example, a maneuver type might be FLY_TO. FLY_TO will maintain a course to a specified point in space, checking to see how far away that point is and whether adjustments in the heading is required. When a maneuver is completed, that maneuver is popped off of the ship’s program stack and thrown away. When a maneuver is pre-empted, it is suspended and its scratch pad information is stored on the stack with the command itself.

 Maneuvers tend to be fairly intelligent and mid-level routines that call even lower-level simple functions that provide very basic affects to the spaceship. These lower level functions are trivial, redundant code snippets that may be as simple as ROTATE_SHIP_X or some similar motion that every maneuver will use.

�Gameflow

What is GAMEFLOW?

How will GAMEFLOW differ in Wing Commander 5?

What development tools will be needed?

Main programming tasks involved.

What is GAMEFLOW?

GAMEFLOW is the “heart” of the (tiger? Sorry!) Wing Commander gaming experience. Character interaction, game control, story building, mission briefing etc. is all handled here.

Wing Commander 3 took the largest technological leap forward, making the game experience much more interactive and submersive. Decisions made during conversations with shipboard characters determined individual morale levels and more importantly the players progress within the game. The player gained a much needed feeling of ownership of his/her destiny while playing. While sub-plots and interaction with the individual NPC personalities can be fun and engaging, care must be taken to avoid too many ‘red herrings’ that may distract the player from completion of the main game plot. Game housekeeping, while an absolute necessity, should be hidden from the player as much as possible so as not to distract the player too much from his overall gaming experience. Although GAMEFLOW should basically lead the player through the entire game only allowing him to choose from already pre-defined paths, we should attempt to make the player feel that at any moment a single action from him/her could drastically alter the course of the game, keeping the player at the edge of his/her seat, totally immersed in the Wing Commander universe.

Visually there is not much more we can accomplish within the GAMEFLOW system. Improvements upon previous GAMEFLOW systems should be concentrated around user interface issues.

How will GAMEFLOW differ in Wing Commander 5?

General consensus within the Wing Commander team seems to lean towards a more simplistic gameflow format.

Plot dependent movies to be shown immediately upon return from flying a mission. Other non-plot critical movies to be shown during interaction with NPCs.

Less rooms aboard the main ship. (Briefing room, bar / ready room, bunk room.) Map method of navigating on board the ship used in Wing Commander 4 should be viewed as a stop-gap method for keeping the public happy until a new method of shipboard navigation could be conceived.

Fewer non-plot dependent movies / conversations. Aside from the obvious financial savings during the movie shoot, less CD space will be needed to store all the movies reducing overall COG.

Interaction with the ship’s computer for game housekeeping should be kept very simple, and even totally automated where possible, in order to not distract the player from his main aim in playing the game in the first place. Care must be taken when designing a password system (if needed) for the PSX version.

Movies should be shot with as little background movement and lighting changes as possible. Current compression techniques do not handle this kind of data very well.

What development tools will be needed?

Update of Frank Roan’s MELO™. Still need to talk to Frank about this.

A.C.E. / Ed Maurer Gameflow editor. The properties of this tool are currently undefined. Ed Maurer has simply expressed concern regarding accessibility of game data by both the GAMEFLOW and the SPACE FLIGHT parts of Wing Commander 5. Events in SPACE FLIGHT must be reflected by GAMEFLOW upon return from successful/unsuccessful missions. Ed was looking into ways to combine the Mission Editor with some sort of GAMEFLOW Editor to keep the data tables for each section always synchronized.

Update of RAMMER™. This tool will need updated to take Alias model data as input source. Currently it only supports the EOR™ format. PCI may be the best person for this as he is very familiar with the source code.

Update of CLIPPER™. I have begun updating this PSX specific tool by dumping all extraneous code needed for dealing with 3DO .CEL files for PROWLER™. Source format will remain .TGA files but the output .SHP format has been reworked to be more like the .VRM format used in PROWLER™. The new .SHP format will require significantly less parsing while improved indexing should decrease data access times.

Main programming tasks involved

Room System

Which background to display? Set the scene for the player. Plenty of eye candy, always have something moving.

Who is in the room? Assign characters that the player can interact with. Populate the rooms with “extras” too. Perhaps make it more life like with rooms being busier/emptier depending on the onboard time of day?

Links to other rooms. Every door must lead to another room, butt not maze style. The player should be able to easily and confidently navigate his way around the ship. Rooms, items and people mentioned in conversations should be instantly recognizable by the player.

Postage Stamps

Animation system for characters in the various rooms. Smooth flowing 2D animation of any character in a room, whether he can be interrogated or not. PSX animations need to be thought out carefully due to lack of RAM. Wing Commander 4 PSX should be implementing a frame differencing system that should reduce the footprint of each individual animation. Room data needs to be structured in such a way that the game only loads the relevant animation data rather than all possible animations.

Conversation System

Conversation movie playback. Standard movie replay in hardware supported video modes. PSX will be 320x240.

Thought Bubble System™ tracking. Decisions made by the player during “conversation” movies should affect gameplay. These should be kept fairly obvious ways as the player must be able to see how his choices have affected his overall game.

Game Load and Save

Simplistic, yet informative, system with emphasis on ease of use (Wing Commander 3 3DO is a good example). Possibly automate this entire process? Wing Commander 3 PSX was a total disaster in this respect. Wing Commander 4 PC was a little too lengthy.

Password system for PSX version. How the &^%*^ are we going to get all that data into a password?

Player Info

Number of kills / game killboard. It’s always nice to compare your prowess against the computer controlled pilots, but how can the player verify the NPC kill data?

Player rank. Where exactly is the player in the pecking order? Can we promote him during the game? If so, what differences will the player feel / see due to his promotion? Popularity with other NPCs may decline now that the player is climbing the ladder?

Commendations and/or medals awarded. Outstanding combat skills could be rewarded with commendations from the ships captain.

Option Screens

Transitions ? ON : OFF Possibly lose these entirely? Although it is considered to be a ‘nice touch’ by some, I personally feel that they become very repetitive and eventually are viewed as a time consuming and a waste of CD space.

Skill level / Enemy intelligence. Standard option for altering difficulty of gameplay. Although this has potentially more impact on the PSX version, this would allow more flexibility in gameplay styles for the PC users.

Sound Test. Preview all of the sound effects and tunes. PC needs this for soundcard installation. This has always been regarded as a standard feature of any console based game (and a good debugging aid ()

Player Invulnerability. Max those shields at all times! Real time toggle option when faced with a ‘tough’ enemy.

Unlimited Ammo / Power. For the trigger happy amongst us.

Cheats, cheats, cheats! Kids love ‘em! Hint books/magazines/web sites are a form of free advertising.

What’s Bad for Gameflow?

Any overlapping sprites (people, doors, ceiling fans, etc)

Doors that are wide along viewable/useful space. Place all doors along walls that have very little screen space (which are squashed by perspective).

Any movable chairs, tables, desks, etc. Chairs should be bar stools which are absolutely locked into place, or sculpted into the set itself.

Any chairs that face away from the camera, assuming they have backs on them. These inevitably get in the way of a shot and will be moved. See previous point.

Bright lights, colored lights that can be obstructed by character movements, doors opening/closing.

Any stupid flashing lights are cause for execution of the set designer.

Dark sets are bad. This means constant lighting changes will be required for certain movies, and this is to be avoided. Try to not force changes from scene to scene in lighting. It’s easy to see changes in lighting over dark surfaces when one is lit brighter than another.

Any place a chair is, a light should be placed to illuminate that person’s face if someone can EVER sit there and not need his face be obscured in shadow.

No fans, no rotating things, no nothing that moves. Lock everything down.

No glasses, cups, plates, etc, moving when doing looping animations. If they have to move, mark their spot on the table/bar and make sure they return there at the end of every sequence.

Try to eliminate having multiple people in the same room that you can talk to at the same time, OR eliminate having them be dependent conversations. (To the script writers, I guess)

No shiny floors.

No windows with green screens unless ABSOLUTELY necessary. This forces us to composite thousands of frames of sprites onto the window. Slows down the delivery of graphic data to gameflow.

No lamps on tables, no candles, or any other light sources that can throw shadows. Shadows are not our friends.

No animations that cause a person to move through more than 1/8th of a frame’s distance. Any more than that and it will be artificially reduced. The Sony PSX has limitations on gameflow graphic memory. Large movements means large sprites.

No fast movements when doing animations. If frame rate isn’t exactly what the sampling rate is (29.999, presumably) these animations will look stupid and jumpy.

Use more greens and reds than blues. Preferably greens. 16 bit color is 6 green, 5 red, 5 blue, so more green can be represented without loss of color fidelity. Blue is also poorly perceived by the human eye.

No foosball tables with rotating bars with men on them which could move from scene to scene. If something that can turn is in the picture, super glue it steady and never move it.

Try to set important conversations BETWEEN the foreground and the background of a set...make tables and chairs that are highlights of sets be not-too-close to the camera, but not as far away as those in the bar scenes in WC4. Placement can do a lot for detail on a computer screen, as well as clueing in the player on what is a conversation. Too close, and the average conversation sprite will be too big. Screen space is the key.

Don’t make the rooms seem too small. The elevator in WC3 served little purpose.

Don’t make the rooms seem too large. The control bay in WC4 was so large it looked barren without people there, and there wasn’t enough memory to hold animations for everybody on screen... consequently nobody moved unless they were conversations.

��Lastly: If you have any questions about what would work and what wouldn’t, don’t hesitate to ask. It’s far better to save us 100’s of hours up front with good design than deal with the aftermath later.

�

Section 4 - Art and Production Design

�

�

Figure � SEQ Figure * ARABIC �4� - Alien Fighter

Conceptual ship sketches

�

Figure � SEQ Figure * ARABIC �5� - F-108a Panther

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �6� - Panther Wireframe

�

Figure � SEQ Figure * ARABIC �7� - F-109a Vampire

�

Figure � SEQ Figure * ARABIC �8� - Vampire Wireframe

�

Section 5 - Audio

��Upping the Audio ante on Wing Commander Five

3/1/1996 Martin Galway, Stretch Williams

***	The #1 Goal: Increased Efficiency ***

	1) bringing more jobs in-house

	*	movie dialogue editing

	*	spaceflight dialogue direction/editing

	*	sound-effects design/editing

	*	ADR spotting/direction/editing

	*	foley direction/editing

	*	music mixing

	*	mixing movie audio

	*	dubbing French & German movies

	2) appropriate equipment update/procurement

	*	Avid Audiovision on-site

	*	properly-outfitted, 5.1 multitrack mixing room on-site

	3) better preproduction

	*	full cast list planning, inc. all generic spaceflight characters

	*	“trial runs” on spaceflight dialogue - “preproduction QA”

	*	give artists prototype speech for CG movies (helps timing)

	*	script layout

	*	multiple-person comms

	*	complete schedule of all script V/Os, (record trial versions for shoot?)

	4) better postproduction

	*	regular visits with QA for advice/feedback

	*	spaceflight sound mix program (dialogue, music & SFX)

	*	tests with full range of loudpeaker types owned by customers

�

*** If We Achieve This Goal ***

	1) Improve Quality

	*	higher quality sound playback

	*	more sound events (sound effects & dialogue)

	*	better placement of sounds (panning, surround, volume)

	*	consistency of sound between gameflow, movies & spaceflight

	*	music that’s more interactive & more orchestra-like

	2) Save Money

	*	reduce billing of outside studios to minimum

	*	reduced script changes = no “re-dos” of dialogue recording

	*	reduced media transportation & storage costs

	*	no repeat ADR sessions on expensive actors

	*	one-off dubbing sessions in France & Germany, not several

	*	little or no re-done movie mixing

	*	audio facility will save further costs on future projects

	

3) Save Time

	*	No unplanned overnight sessions = no employee insanity!

	*	react better to unplanned design changes

	*	react better to director input/QA suggestions

	*	larger workload carried out by fewer staff

	*	spend more time being creative, i.e. better sound

*** Use 22050 stereo 16-bit output DAC mode at all times, and interactively encode with Dolby Surround. Sound “Mixing” tool to allow audio staff to balance sounds during gameplay.

	This is an acceptable data rate for any type of sound at this stage of game production. It gives a frequency response of 11KHz and dynamic range of 96dB. We need this kind of dynamic range to represent quiet lulls and gigantic rises in the music, and to allow moving objects to properly have heard in the distance without hissy distortion. A “monophonic listening option” is required on the control panel so that the information usually positioned in the surround channel is not lost when customers are listening in mono. Spaceflight music would be stereo, not four-track, for data size reasons, and other sound-effects will be stored at various sampling rates, 8- and 16-bit, mono or stereo, and mixed into the 22050s/s 16-bit stereo DAC stream.

	The 16-bit playback environment allows a much deeper soundfield to be arrived at. We can keep our overall sound level at perhaps 2/3 of full strength, and for those occasionally massive explosions or other types of loud sounds we can go to full power. This allows us to use sound as another tool in giving perceptual “boosts” to important plot elements and events as necessary. The 8-bit DAC playback environment of WC3/4 during spaceflight causes everything to have to compete for intelligibility, and so there’s not too much variance between sound levels. This carries over to our movies, which though they are played back in 16-bit DAC mode, they still have to be boosted in volume (with a commensurate reduction in valuable dynamic range). Everything suffers. When we use 16-bit output exclusively, we can control the level of spaceflight-versus-movies properly, and not allow it to make the game feel unprofessional like it does in WC3/4.

	This technology increase puts in better light the need for a full, final mixing stage during spaceflight sound development. With the 16-bit DAC playback, and increased audio events from music to dialogue to sound-effects, we are really synthesizing an audio mix interactively. We must try to pay as much attention to the mix of these elements as we do to the movie mixes. The effect of dialogue on the volume of other sounds has to be examined; some dialogue is crucially important and other dialogue is not.

	Marketing will be able to proclaim WC5 as the first “hi-fi” game, which is of course in keeping with Origin’s reputation for stretching the technological envelope in these still early days of computer game history.

*** Mix all streamed audio in 5.1 for future platforms/use.

This is for future use. I cannot directly come up with real-world applications for this except for subsequent re-releases of the game with the upgraded discrete surround audio. Streamed audio includes the spaceflight and gameflow looping music (as design dictates), gameflow looping ambiences and movie mixes. PCCD WC5 itself will use Dolby Surround remixes of these 6-track originals. (This 6-track arrangement is the same as that used theatrically by the DTS-6 and Dolby SR*D digital sound systems)

*** Use orchestra for music.

	You can play WC3 against WC4 and easily discern the giant difference in orchestral simulation quality between the synthesizers playing the score (One, sometimes two Kurzweil K2000s for WC3; Kurzweil K2500 + fully expanded Emu Emulator 4 for WC4). I fully believe we can maintain the same quality increase, and further, attain the “movie quality” we constantly strive for, only by stepping up to a real, acoustic orchestra. It doesn’t have to be a top orchestra, we can leave that for a future product. Using an orchestra is expensive and required exact planning, and we can smooth over the inevitable production design changes by using the synthesizer set-up already employed in WC4.

	By the way, my opinion of Wing Commander Universe music is that by and large, for Wing Commander X titles which are the tentpole products in the franchise it must remain in the Star Wars/Star Trek orchestral mould, but can vary for other types of game in the universe, e.g. Maniac Missions, Privateer II.

*** Increase number and improve planning of generic enemy characters and specific-case lines. QA must check that the same character is never heard twice in the same mission.

	You can easily tell that the speech is re-used over and over in WC3, and we tried to correct that in WC4, but the reality is we simply kept pace with the overall increase in actual characters in the game, but didn’t increase the number of generic characters too significantly. For example there are only 4 pirate fighter voice sets. Sometimes the same one voice set is used for different fighters in the same squadron of attacking ships, and you hear the exact same death scream twice, in addition to identical taunts! Obviously this is a “bug” which can be avoided by development methodology.

	Also some events in WC3/4 cropped up where there was no dialogue for certain game instances; WC4 examples: when Sosa is in the MIP, who takes over at the microphone for all the regular Intrepid comm messages? When you decide to defect and Maniac doesn’t and you dogfight, what does Maniac say over the comm during this battle? When you talked to Confed transport ships after you’d defected to the Border Worlds side, did they react in the same way they did when you were on the Confed side? None of these situations were properly addressed and so WC4’s spaceflight dialogue is like a pair of jeans with several patches sewn over the holes. With precise planning between the mission designers and the audio/script staff we can prevent these problems (which cause unscheduled post production work - that would be bad).

*** Full audio post production on all spaceflight dialogue, including sound-effects.

	Over-the-radio/TV screen communication is one of the hallmarks of the Wing Commander game system which sets it apart from other companies’ products, e.g. Tie Fighter. This type of improvement means doing it all on Pro Tools sync’d to VHS/Beta, or preferably, on Audiovision, and spending the time required to get it really nice, rather than dealing with the sounds in bulk and applying the same blanket processing. Hopefully we can have a much expanded and better documented list of visual effects on all the spaceflight comms, and then we can build a more complex set of audio effects and vocal distortion sounds. The 16-bit DAC playback environment will allow such nuances to be heard when they would otherwise have been lost in the 8-bit hiss. “Rebel Assault II” has great vocal effects processing on its movie dialogue, and we need to match or better that. This work will require a “dubbing” stage to be added to the schedule, as sound-effects then have to be applied to the non-English versions, but the work can be planned in such a way as to make this achievable within a reasonable time frame rather than take forever and be a big headache (or get done in a low-quality manner to save time). Our responsibility to keeping up the sound quality on the non-English versions is just as high as it is on the English version, especially with the strong growth in German sales.

*** All dialogue recorded in proper sound studio - forget doing it on location.

	The dialogue in WC3 was recorded in a room off the shooting stage, which itself was not a soundstage. The sound quality was dreadful, and the union staff involved were clearly not doing their job of making sure a decent signal was going on to the DAT tape. On WC4 the dialogue was recorded in a combination of locations, some on the set (noisy sound quality and sometimes lousy recording job), and some regular voice-over studios (great sound quality and recording job). So it was better than WC3 but I still want it all brought up to studio quality. Also some of the vocal direction was incorrect due to communications breakdowns between OSI and these recording locations. We should have an WC5 audio staffer familiar with the script and game present during all dialogue recording to ensure all takes are read with the appropriate inflections, etc..

�

Section 6 - Team Organization

��

PC

�� EMBED OrgPlusChart ���

�

Wing V Producer - Job Description

REPORTS TO: Executive Producer

Project Specific Description

PRIMARY RESPONSIBILITIES:

Manage the financial budgeting of the project.

Make sure that the project is adequately staffed.

Communicate with Origin and EA management the objectives of the project and it’s status.

Assure that the project is supported by the best structure available.

Manage the schedule and maintain the development plan.

�

Wing V Director - Job Description

REPORTS TO: Producer

General Origin Description

PRIMARY RESPONSIBILITIES:

Direct , individually, wider group range on projects under guidance of producer of team.

Capable and responsible for day to day task management.

Prove success in large and small financial responsibility.

Excel in director capacity.

And other duties as assigned by Senior Producer.

Project Specific Description

PRIMARY RESPONSIBILITIES:

Create project Bible, which includes Technical Design Document (TDD), and all design specifications.

Build and maintain qualified project team, capable of executing requirements of TDD.

Support and assist the ACE group in the well-timed creation and delivery of effective libraries and tools.

Attempt timely and quality execution of TDD.

Maintain and update TDD on a regular basis as well as overall project schedule.

Work with all component managers to ensure above stated goals.

Coordinate with Translations to facilitate localizations of product.

Assemble all components into final, shippable product.

Integrate QA team into end of project cycle.

Ensure look and feel of end product is up to Origin/EA standards.

�

Wing V Art Director - Job Description

REPORTS TO: Art Coordinator

Develop Art Vision

Use guidelines established by Production Designer in Art Bible to define overall artistic vision for the game

Oversee continuity and quality of art throughout production and post-production

Work with SPFXC to manage information exchanges to and from live action shoot

Manage Execution of Art Tasks

Insure that established look and feel are adhered to in production of game art

Serve as communication hub for changes or concerns related to art - objects, animations, and composites

Approve individual production art items at a series of completion stages

Mediate art critique sessions

Assist in Art Task Assignment

Work with APC to identify strengths, skills, and interests of art staff for use in determining task assignment within established deadlines

Work with APC and art staff to identify and develop career goals and methods for their achievement

�

Wing V Production Designer - Job Description

REPORTS TO: Art Coordinator

Develop Look and Feel Guidelines for the Game

Incorporate design ideas from art, game design, and video production staff into overall visual design

Assemble design guidelines into a reproducible document (Art Bible)

Clearly communicate design guidelines to AD, DP, and Director

After preproduction ends (on a date to be determined by the project management), PD will assume role of production artist and hand over maintenance of Art Bible to the Project Coordinator. The Art Director may elect to solicit the PD’s input on specific tasks during production if the AD deems it necessary.

�

Wing V Art Coordinator - Job Description

REPORTS TO: Project Director

Develop Database

Work with SPFXC and AVID Operator to extend the usefulness of the database to the film/video shoot side of production.

Develop naming conventions based on those used by the film/video shoot and maintain them through the production.

Develop procedures for transfer of information from the shoot database (MovieMagic)

Collect and track all art resources

Work with AD to derive shot list and art tasks from storyboards.

Input scenes and art related tasks to the database.

Schedule and track the progress of art tasks.

Set up network hierarchy with directories for all final work. Work with network administrator to optimize workflow and minimize backup in network hierarchy

Ensure biweekly backup of net by UNIX administrator

Communicate necessary shot information to the artists

Create and maintain dry erase board with animation/ rendering schedule

Create and maintain storyboard wall - all shots will be represented along with progress check box. When final renders receive approval storyboard is replaced with a color snapshot

Create and maintain listing of where source files are kept

Create and maintain file cabinet with folder for each scene. This will include a check list for approvals and archive confirmation, name of assigned artist, due date, completion date, relevant script excerpts, location and description of associated files (meshes or textures), and names and destinations for final render files on the net. The file cabinet will be divided by scenes to be done and scenes completed

Maintain Art Bible

Manage Art Group

Work with AD and producer to factor artists’ skills and interests into task assignment with the objective of encouraging artist growth

Work with Art Director and AP’s to determine how artists are shared between projects within our production group and with outside production groups.

Make recommendations regarding equipment & software, reference materials, continuing education/visiting artists that will contribute to production and to a creative environment

Request and log weekly A’s & O’s as a way of tracking progress

Output Animation

Deliver or communicate location of test renders to SPFXC for director’s review

Insure the delivery of final animation and artwork on schedule and clearly documented for post production

Produce Artwork

When feasible, APC will serve as a production artist in addition to performing management tasks

�

Wing V Special Effects Coordinator - Job Description

REPORTS TO: Art Coordinator

Serve as Liaison between Director and Art Director

Communicate to Director technical needs and concerns of production artists

Represent AD’s creative art vision to Director

Preview animations from production artists to director and receive approval or change information

Communicate to AD Director’s changes to or concerns with animations

Communicate to PC technical information from set: photos of sets, props, and actors; camera logs, schematics, etc. to be integrated into Art Bible

Maintain copies of records of set, prop, and other miscellaneous archives

�

Wing V Lead Programmer - Job Description

REPORTS TO: Project Director

General Origin Description

PRIMARY RESPONSIBILITIES:

Ability to make recommendations to improve group productivity.

Must be technology oriented expert.

Fluency in multiple high level languages, including C/C++ is required.

Familiarity with target platform assembly; should be capable of debugging high level source code.

Superb organization and communication skills.

Quality and quantity of work should be well above average.

Complete well designed and documented code within schedule.

Ability to work with other studio groups including art and audio to achieve objectives.

Proficient at all phases of computer game implementation used at Origin.

Must be able to function in a leadership position.

Must be able to communicate effectively with team members and management.

Project Specific Description

PRIMARY RESPONSIBILITIES:

Work with project director in creating programming related Technical Design Document (TDD).

Work with project director in creating programming milestones.

Work with project director and ACE director in creating Wing V specific technical specifications.

Work with ACE library/tools group in creation and timely delivery of effective libraries and tools.

Work with project director in staffing programming team.

Manage the day to day activities of the programming team, including scheduling.

Fulfill programming tasks at the level of Senior Software Engineer.

Provide programming status reports on a regular basis.

Work with all members of programming staff to ensure timely and quality execution of milestones.

Work with project director in assembling all components into final, shippable product.

�

Wing V Audio Director - Job Description

REPORTS TO: Project Director

General Origin Description

PRIMARY RESPONSIBILITIES:

Be an expert in the field of audio signal creation/manipulation.

Be an expert in interactive/multimedia audio applications

Adhere to highest level of audio standards.

Submit high quality, completed work on schedule.

Experienced in team/group management.

Maintain superb organization and communication skills.

Display strong leadership skills.

Maintain positive relationships with individuals, groups, and all levels of management.

Project Specific Description

PRIMARY RESPONSIBILITIES:

Research current and future audio technology and make recommendations for application.

Work with audio team to develop the Audio Design and Application manual for Wing V sku’s.

Work with Project Director(s)/Producer to create detailed task/staff schedule.

Work with Project Director/Producer for approval of additional audio staffing.

Oversee and contribute to interactive audio sound design and application.

Work with Producer to ensure that in-house audio facility is up to spec. by mid-production.

Work with team to complete pre-production dialog design/planning for both cinematics and gameplay.

Be prepared and present at production shoot. Communicate well with production engineer.

Provide production status reports and documentation to audio team on a regular basis.

Facilitate out-of-house facilities scheduling when necessary (Foley, ADR).

Oversee and contribute to creation and application of cinematic sound elements.

Oversee and contribute to final mix execution in both cinematic and interactive game segments.

See that translation concerns are incorporated in an efficient and timely manner.

Provide organized archives and laybacks of all Wing V related audio material.

Specifically design and deliver audio content to specifications of target platform(s):

sample rates

bit depth

mono/stereo

Dolby encoded

�

Wing V Lead Designer- Job Description

Reports to: Project Director

General Origin Description

PRIMARY RESPONSIBILITIES:

Possess high level of creative and organizational initiation.

Possess knowledge of basic programming concepts, compilers, and data structures.

Familiar with basic tools and terminology of other departments.

Able to officially represent your project to the general public under the guidance of project director.

Possess well developed inter personal and supervisory skills.

Capable of generating and proposing feasible and marketable core game ideas.

Responsible for overseeing documentation, testing and QA process.

Have a vast knowledge of competitive games in your genre.

Project Specific Description

Must possess complete vision of entire game design: storyline, balanced gameplay, art, sound, movies.

Responsible integrating all major elements in the game design to assure quality and consistency.

Coordinate the efforts of department heads, project director, and storywriter to develop look and feel of end product.

Oversee the tasks of design personnel - training, implementation, and mircrodesign - to assure quality and consistency.

Work with programmers to identify and develop tools necessary for the design team do their jobs efficiently and effectively.

Coordinate the activities of each departments, under guidance of project director, to ensure consistency, quality, and timely implementation.

Make sure every member of the project understands and has easy access to the design plan.

Generate time line for design tasks, and assure their timely and quality execution.

Act as a liaison with QA and coordinate testing as it relates to the design aspects of the game.

Implement design needs as necessary.

�

PSX

�

� EMBED OrgPlusChart ���

NOTE : Several team members are shared between the PC and PSX. Descriptions for these positions can be found in the PC documentation.�

Wing 5 PSX Producer - Job Description

REPORTS TO: Executive Producer

Project Specific Description

PRIMARY RESPONSIBILITIES:

Manage the financial budgeting of the project.

Make sure that the project is adequately staffed.

Communicate with Origin and EA management the objectives of the project and its status.

Ensure that the project is supported by the best structure available.

Manage the schedule and maintain the development plan.

Ensure that the schedule is accurate and honest.

Recommend continuing education options for team (PSX, ACC, Game Developers’ Conferences, C++, etc.)

Maintain information flow between all team members.

Identify base requirements for a 3rd generation PSX product, and deliver to, at least, these specifications.

Gameplay, Gameplay, Gameplay!

Ultimately responsible for overall quality of product.

Stand up to EA/Origin management with respect to the best interests of the game and the team.

Be available, or at least, contactable.

Keep communications open with 3rd party developers (Lion Entertainment) and Sony.

�

Wing 5 PSX Game Director - Job Description

REPORTS TO: Producer

General Origin Description

PRIMARY RESPONSIBILITIES:

 Direct , individually, wider group range on projects under guidance of producer of team.

 Capable of and responsible for day to day task management.

 Proven success in large and small financial responsibility.

 Excel in director capacity.

 And other duties as assigned by Producer.

Project Specific Description

PRIMARY RESPONSIBILITIES:

Create PSX specific Game Bible, which includes Technical Design Document (TDD), and all design specifications.

Build and maintain qualified project team capable of executing requirements of TDD.

Support and assist the ACE group in the well-timed creation and delivery of effective libraries and tools.

Ensure timely and quality execution of TDD.

Examine TDD on a regular basis and update when necessary.

Create and maintain an accurate and honest schedule for PSX version.

Assemble all components into final, shippable product.

Ensure look and feel of game is up to Origin/EA standards.

Identify common code and data between PC and PSX

Synchronize schedules with PSX, ACE, and PC to minimize duplication of work.

Coordinate with translations to allow seamless localizations, including Japanese.

Ensure PSX version meets all CURRENT Sony standards and requirements.

Coordinate delivery of versions to, and receipt of buglists/feedback from QA lead.

Maintain information flow (e.g. group meetings, status reports, one on one meetings).

Work with all component managers to ensure above stated goals.

�

Wing 5 PSX Lead Programmer - Job Description

REPORTS TO: Game Director

General Origin Description

PRIMARY RESPONSIBILITIES:

Ability to make recommendations to improve group productivity.

Must be technology oriented expert.

Fluency in multiple high level languages, including C/C++ is required.

Familiarity with target platform assembly; should be capable of debugging high level source code.

Superb organization and communication skills.

Quality and quantity of work should be well above average.

Complete well designed and documented code within schedule.

Ability to work with other studio groups including art and audio to achieve objectives.

Proficient at all phases of computer game implementation used at Origin.

Must be able to function in a leadership position.

Must be able to communicate effectively with team members and management.

Project Specific Description

PRIMARY RESPONSIBILITIES:

Work with game director in creating programming related Technical Design Document (TDD).

Work with game director in creating programming milestones.

Work with game director and ACE director in creating Wing 5 PSX specific technical specifications.

Work with ACE library/tools group in creation and timely delivery of effective cross-platform libraries, tools, and data formats.

Work with game director in staffing programming team.

Manage the day to day activities of the programming team, including scheduling.

Fulfill programming tasks at the level of Senior Software Engineer.

Provide programming status reports on a regular basis to Game Director and/or Producer.

Work with all members of programming staff to ensure timely and quality execution of milestones.

Work with game director in assembling all components into final, shippable product.

Work with component managers to determine technical specifications for PSX specific components.

Maintain communication with lead PC programmer to minimize duplication of work.

Be a strong leader/mentor for PSX designers.

�

Wing 5 PSX Lead Designer- Job Description

Reports to: Game Director

General Origin Description

PRIMARY RESPONSIBILITIES:

Possess high level of creative and organizational initiation.

Possess knowledge of basic programming concepts, compilers, and data structures.

Familiar with basic tools and terminology of other departments.

Able to officially represent your project to the general public under the guidance of game director.

Possess well developed inter personal and supervisory skills.

Capable of generating and proposing feasible and marketable core game ideas.

Responsible for overseeing documentation, testing and QA process.

Have a vast knowledge of competitive games in your genre.

Project Specific Description

Must possess complete vision of entire game design: storyline, balanced gameplay, art, sound, movies, PSX standards, controllers, cheats, option screens.

Responsible for integrating all major game design elements to ensure quality and consistency of PSX version.

Keep Component Managers aware of the standards of our PSX competition, and suggest 3rd generation standards.

Direct the game design to take advantage of the PSX, and avoid PSX limitations.

Should establish self as an expert in the PSX market, and ensure that the game design meets or exceeds expectations of PSX audience.

Generate time line for design tasks, and ensure timely delivery.

Oversee the tasks of design personnel - training, implementation, and microdesign - to ensure quality and consistency of PSX version.

Work with game director to identify and help develop tools necessary (mission editor, etc.) for the design team do their jobs efficiently and effectively.

Make sure every member of the project either understands or has easy access to the design plan (Game Bible, Web Pages, Electronic Cinema, etc.).

Act as a liaison with QA and coordinate testing as it relates to the design aspects of the game.

Implement design needs as necessary under guidance of Game Director.

�

Wing 5 PSX Art Director - Job Description

REPORTS TO: Art Coordinator

Develop Art Vision

Use guidelines established by Production Designer in Art Bible to define overall artistic vision for the game

Customize visual design for PSX audience

Make design modifications to exploit strengths or avoid limitations of PSX hardware

Append to the Art Bible all design modifications specific to PSX version, and report them to the Production Designer

Oversee continuity and quality of art throughout production and post-production

Work with Special Effects Coordinator to manage information exchanges to and from live action shoot

Manage Execution of Art Tasks

Ensure that established look and feel are adhered to in production of game art

Serve as communication hub for changes or concerns related to art - objects, animations, and composites

Approve individual production art items at a series of completion stages

Mediate art critique sessions

Assist in Art Task Assignment

Work with Art Coordinator to identify strengths, skills, and interests of art staff for use in determining task assignment within established deadlines

Work with Art Coordinator and art staff to identify and develop career goals and methods for their achievement

�

Section 7 - Schedules

��

Overall Project Schedule

�

Detailed Programming Schedule

�

Detailed Art Schedule

Wing Commander 5 T.D.D.		� PAGE �23�

Wing Commander 5 T.D.D.							� PAGE �103�

Wing Commander 5 T.D.D.		� PAGE �104�

�

