file: $/wc5/doc/technical/language.doc

description: design / tech. design for language & localization system.

authors: dan taillefer & hugh david, (c) origin systems, 1997

version: draft 3

Wing Commander 5 -- Localization of game text.

0. Introduction.

The purpose of this document is to explain how game text will be localized / translated to languages other than English. This document is written for both the Development Team and the Translations Department. As such, it is a mixture of technical specifications and explanations in plain English. It may be useful for a Translator to read this document from the front to the back and for Developers to read it back to front.

1. Categories of text.

1.1 Text subtitles for Movies.

"Convey as much meaning as possible during the course of the overdubbed speech,

making the text easy to read by taking out words if necessary."

When movie speech is translated into another language, the meaning of the dialogue should be the same, but the number of words spoken and their rate of delivery will differ from the original language (English). To represent a version of this information in the form of subtitles will require a Translator to format the speech as text in meaningful "sub-sentences" which are "time-stamped" onto the movie playback. To help them accomplish this, a subtitling tool will be provided. See Appendix A. Subtitling Tool.

To make the subtitle text look as good as possible in any given language, the Translator will be able to use control sequences. See Appendix C. Control sequences in Translated text.

Thus, the subtitles could, for example, be centred around a specific point on the screen, as shown in the following diagrams:

<diagrams> showing a centre hotspot around which text is displayed.

1.2 Text subtitles for In-flight Communications.

"Convey as much meaning as necessary during the course of the communication movie,

making the text easy to read by taking out words if necessary."

Although similar in effect to the Movie subtitles, this text does not necessarily need to be closely linked to the speech. The reason for this is that the face of the speaker will be obscured. Solving the problem of Movie subtitles will also solve this problem, and for this reason, we will not need to discuss this category of text in further detail.

1.3 All other text

All other text in the game is independent of time in the sense that it appears as a result of player input. However, this text does have to be rendered on the screen and in different languages it will take more or less pixels to convey its information.

Regarding the localization of this text, there are various issues of concern. For example:

how good the text will look on screen

how much meaning the text will be able to convey

how difficult it is to translate the text

how long it will take to write text localization code

Following are 5 methods for the output of variable-sized text strings on screen.

Each method is discussed in terms of the above issues.

1.3.1 Limit the size of the localized strings to a maximum character width.

<drawing>

looks: the space on screen the text will occupy will be nearly constant for different languages, but abbreviations and hypenations may look bad. proportional spacing of text will result in different sized output text.

meaning: some abbreviations &/or hypenations may be difficult to make &/or understand

translation: may be difficult

programming: easy

1.3.2 Specify a rectangle in which the string must be rendered, which has enough room for translation into any language (we hope).

<drawing>

looks: may be bad (empty boxes or overflow in a future language)

meaning: good

translation: easy

programming: easy

1.3.3 Make sizes of fonts and screen output areas allow for plenty of room in which to render the text (an extension of method 2).

<drawing>

looks: may be bad (empty boxes or overflow in a future language)

meaning: good

translation: easy

programming: easy

1.3.4 Use slightly different sized fonts depending on language.

<drawing>

looks: text could occupy similar amounts of pixels on screen. not guaranteed to be good in an arbitrary language. some characters of fonts may look bad in low resolutions. font size may need to be changed dynamically. statistical data on the "expected pixel size" of text strings in different languages may be difficult to obtain and still does not guarantee correct results.

meaning: good

translation: easy

programming: more difficult (more font data, maybe more artwork)

1.3.5 Use resize boxes (text display areas) whose horizontal and vertical sizes depend upon the characteristics of the text to be printed.

<drawing>

looks: as good as possible in any language. Translator(s) in control of looks of the way text is laid out by using control sequences. see Appendix C. Control sequences in Translated text.

meaning: as good as possible for any given 'look'

translation: medium (some text formatting required)

programming: medium (alter code for variable size/shape text boxes)

2. Translation in action.

2.1 Initial installation.

Preparation for the work of translation will require the following steps:

Install Visual SourceSafe (VSS). This is the version controlling software being used by the development team. The Translator will use this tool to "check out" source (English) and destination (target language) text data files. VSS installation is best carried out by a member of the Networks & Technical Services team. Currently, Albert Mayer is Maverick's Technical guy.

Run VSS. Set the "Current Working Directory" for the root project in VSS. This directory will be referred to as "$/" (dollar sign, oblique).

In VSS, each Translator will have read-only access rights to the $/wc5, $/wc5/exe and $/wc5/data 'projects' and read-write access rights to the $/wc5/data/language project. (Read-only access to the files $/wc5/doc/technical/language.doc and $/wc5/src/engine/language/str.def would also be useful)

The game executable code and data. This will be the latest version of the game that the Translator can use to test their work. In VSS, perfrom a "recursive get" of the $/wc5/exe and $/wc5/data directories

The game configuration file. Copy the example configuration file and make any necessary modifications. In VSS, perform a "non-recursive get" of the $/wc5 directory.

Direct X 3. This is required by the game. Currently, it is necessary to install this in a separate step from the game code and data and until this changes, a CD will be available. Again, see the Networks & Technical Services team.

The Translation Tool. See Appendix B. In VSS, perform a "get" of the file $/wc5/util/<whatever_it_ends_up_being_called>.exe.

2.2 Running the game.

Although the game is a windoze '95 native application, it is easier to run it from within a dos box, i.e.:

c:\>\wc5\exe\wc5 example.cfg

A dos batch file may be used to make this easier.

2.3 Translating and testing text.

A Translator would start the translation tool application and load the file $/wc5/data/language/text.eng. Using the translation tool, the Translator can look through the English text strings and convert them to another language. This work can be saved as $/wc5/data/language/text.xyz for language "xyz".

This text can now be viewed within the game. Alter the configuration file so it has a language flag set to "xyz" and re-run the game.

(see: Appendix E. Data File Formats.)

(see also: Chunk Karpiak)

Appendix A. Subtitling Tool.

(note: will be in $/wc5/util/)

(note: see jeff grills about this tool)

The Subtitling Tool can work in various ways, but until such time as the programming team has done more research work, it is difficult to say which is the most appropriate. Furthermore, development time constraints may also affect the construction of a Subtitling Tool. However, the programming team will aim to provide a tool which makes the Subtitling as easy as is possible.

Given a movie of length 'm' time units (or frames) during which 's' speeches are made, the problem to be solved is one of displaying 'ts' text subtitles during each speech. Each 'ts' begins and ends at a specific time unit (frame). This is the data required by each language version of the game. The aim of the Subtitling Tool is to make the preparation of this data as easy as possible for the Translator.

<diagram> time/frame axis showing movie, audio & text start/stop points

The text information will be contained in the text.xyz file and language "xyz" is specified in the game's configuration file. See also section 2. Translation in Action. This subtitling text will have been translated using the Translation Tool.

(note: much easier if this text is in a separate file)

Tool Option 1.

Look at & evaluate Jason Yenawine's subtitling tool. Make modifications if necessary.

Tool Option 2.

A new tool will be developed which will play a sound sample of each speech. As the speech starts, some text will appear on screen. After some time, this text will disappear. After some more time, new text will appear. The process repeats. The Translator will be able to control what text will appear at each stage of the speech, when it first appears and when it disappears. The script text for each speech can be loaded from a data file. Data will be exported to a data file which can be used in conjunction with the game to test the subtitling.

Tool Option 3.

As above, but the movie will be played as well. This will allow a Translator to test their work without running the game.

Appendix B.

Translation Tool.

(note: will be in $/wc5/util/)

(note: see chuck karpiak & brent thale (or mr. mike & brian martin))

(programmer note: translation tool must ignore all control codes, ascii 1-31 inclusive. Subtitling Tool may need to use these control codes)

A tool will be provided for use by the Translators. The tool will be aware of the specification of the 1-byte (and later, 2-byte) character set (see Appendix Y. Character Sets). This is important, since the process of translation of text requires conversion of a keyboard input into a character number and use of this number to display a character (glyph) of the output font on screen. This character displayed on screen in the translation tool must be the same one that is displayed on screen during the game and the same as the character displayed by any text dump from the tool.

Additionally, the translation tool will have these features:

Import original, English text from a file.

Displays English string in a window.

Allows Translator to type translated text in another window.

Choose next / previous string.

Go to specific string number.

Export translated text to another file.

Dump text to file or screen for proof-reading.

(note: could also import localized word dictionaries. see micro$oft common speller API)

(note also: goto <string number> able to parse the <*str.def> files & e.g.: go to <Section>STR_ExampleString or ... Translator views <*str.def> files in some editor & looks for the numbers themselves)

The format for the import / export files mentioned above are discussed in Appendix E: Data File Formats.

In the future, the translation tool may support some kind of version control system, whereby a string can be categorized as one of the following:

requires translation

has been translated

has been proof-read once

has been proof-read twice

(note: this is just an idea right now & see also weston giunta for ideas on version control / file management)

Appendix C. Control sequences in Translated text.

To allow a Translator some control over the way that text will appear on screen, control sequences can be used in the game's text printing system. These will be developed in conjunction with the Translations Department. Here are some examples:

\n newline

\- hyphenate here

\l left-justify text

\r right-justify text

\c centre text

\t tab

\i indent (by width of largest character in the current font)

\hxy centre around hotspot x,y in % of screen coordinates

\rgbxxx change font colour to new 'rgb' value

Also, we can allow the Translator to specify the output of

some game-specific variables, such as:

\p print player's name

\s print player's score

Appendix D. Referencing text.

The problem of localization as it pertains to programmers is that of referring to a piece of text rather than explicitly defining it. For this reason, it is preferable to use labels for the game text. One method, appropriate for c++ code is to use constants, e.g.:

const int STR_StringThatMeansHello = 0

const int STR_StringThatMeansGoodbye = 1

const int STR_StringThatMeansRadar = 2

const int STR_StringThatMeansPowerDistribution = 3

However, it is necessary for game designers to refer to text. Since the designers may use the "xmiff" utility, and xmiff does not support "const", a compromise is necessary. Therefore, labels for text strings will be of the form:

#define STR_StringThatMeansHello (0)

#define STR_StringThatMeansGoodbye (1)

#define STR_StringThatMeansRadar (2)

#define STR_StringThatMeansPowerDistribution (3)

In order that game code will compile without data without error, these labels (definitions) will be held in the game database in the files $/wc5/src/game/language/*str.def.

Labels are used in code in the following way:

<Section>Language::putStr (<SECTION>STR_ExampleString);

or,

<Section>Language::putStr (<SECTION>STR_ExampleString, x_pixel, y_pixel);

and in "xmiff" data files as follows:

...

CHUNK TEXT

{

 long <SECTION>STR_ExampleString

}

...

(note: for a description of "xmiff" see the game database file $/wc5/doc/technical/xmiff.doc, or any Maverick programmer)

Appendix E. Data File Formats.

The use of Unicode to represent all text is currently under investigation. Issues with the use of Unicode may include:

- cost of purchase of standards documents etc.

- licensing.

- conversion of input from international keyboards to Unicode.

- data size doubled for each language that traditionally uses 1byte (ascii) character set.

Game Text.

At present, it is planned to hold all the text for the game in one file (per language).

(but see Appendix A. Subtitling Tool where it is suggested this may not be the best approach)

For example, the version control database would contain the files:

$/wc5/data/language/text.eng

$/wc5/data/language/text.ger

$/wc5/data/language/text.fre

etc.

The format of the data in these files will be a list of null-terminated strings, as shown in the following example "hex" dump:

File: text.eng, Size: 28

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 68 65 6C 6C 6F 00 67 6F 6F 64 62 79 65 00 72 61 hello goodbye ra

00000010 64 61 72 00 70 6F 77 65 72 20 64 69 73 74 72 69 dar power distri

00000020 62 75 74 69 6F 6E 00 bution

00000030

Subtitle Text.

The data format can be the same as game text. Maybe control codes (ASCII 1-31 would be useful to encode time-stamping information)

(notes: If it becomes necessary to split text into separate files, the change will be effected with the minimum of impact.)

(note: do we want our text to be this visible to players or should it be encrypted in some way ?)

(note: Subtitling Tool & Movie playback code might be easier to write if their text is in separate files)

Cockpit data files.

Data files describing the layout of Cockpits (or Head-Up Displays) are coded in the XMiff data format. Since these files include not only references to text, but also rules for the layout of text strings within certain areas of the screen, it is possible that different Cockpit XMiff data files may be required for each language.

(For a more detailed description of these Cockpit data files, see $/wc5/doc/technical/cockpit.doc)

Menu Files.

Data files describing the layout of Menus are coded in the XMiff data format. Since these files include not only references to text, but also rules for the layout of text strings within certain areas of the screen, it is possible that different Menu XMiff data files may be required for each language.

(For a more detailed description of these Menu data files, see $/wc5/doc/technical/menu.doc)

Appendix L. Language management class.

There is a game-independent base class in the "engine\language" area of the vss database called "Language". In order to create a 'section' of text for use in the game, one inherits from this class in the "game\language" area of vss. Also, the data for this 'section' of text can be produced by modifying an existing 'section' of text in the file: $/wc5/dsrc/ language/text.xmf.

Full instructions are provided in the file $/wc5/src/game/language/readme.

Appendix Y. Character Sets.

Y1. 1-byte Character Set.

The 1-byte character set used in the game will be defined in conjunction with the translations department. This character set allows 256 characters (or glyphs) to be represented by a font. The characters 0 to 127 (decimal) will be the same as the standard ASCII character set, but the choice of characters 128 to 255 (decimal) is at the discretion of the translations department. In fact, we would like to suggest that the translations department is responsible for the choice of these characters.

Y2. 2-byte Character Set.

The
 game now has
limited support for 2-byte characters as shown in the following example data:

 FORM LANG				// a section of language

 {

 CHUNK INFO			// info. for this section

 {

 cstring "English"		// name of language

 long CHARACTER_SIZE_2	// bytes-per-character

 long ENCODING_UNICODE	// character-encoding method

 cstring "Test"		// section name

 }

 CHUNK TEXT

 {

 long 0x00650054 //eT

 long 0x00740073 //ts

 long 0x006e0069 //ni

 long 0x00200067 // g

 long 0x002d0032 //-2

 long 0x00790062 //yb

 long 0x00650074 //et

 long 0x00550020 //U

 long 0x0069006e //in

 long 0x006f0063 //oc

 long 0x00650064 //ed

 long 0x00530020 //S

 long 0x00720074 //rt

 long 0x006e0069 //ni

 long 0x00000067 // g

 long 0x00000000 //NULL 'character'

 }

 }

(The example data can be printed as "Testing 2-byte Unicode String")

This example shows how a small subset of the UNICODE 2.0 standard can be processed with the "Language" and "Font" systems currently implemented within the game. Further work on the UNICODE 2.0 standard will be required, however, to provide support for output of CJK (Chinese, Japanese & Korean) Ideographs. This work can be categorized into two broad areas, Character-to-Glyph mapping and Converting keyboard input to UNICODE.

Y2.1 Character-to-Glyph mapping.

The UNICODE 2.0 standard defines "characters" 0x4E00 to 0x9FFF as representing CJK Ideographs. Pictorial presentation of these ideographs requires the drawing of one or more glyphs for each "character". This is called a one-to-many mapping.

The main advantage of using this kind of mapping for the rendering of ideographs is that the amount of glyph data is greatly reduced. There are nearly 21000 possible characters in the range 0x4E00 to 0x9FFF and it would be impractical to create and store a glyph for each one. The problem would be further complicted in the case where the UNICODE 2.0 standard allows for two 2-byte numbers to represent the high word and low word of a character.

So far, we have not been able to discover any heuristics for the implicit generation of glyph indices from the contents of a
character
; indeed, the flexibility of the UNICODE 2.0 standard seems partly due to its lack of "suggestions" of this nature. It seems most likely then, that for each
character
, a list of zero or more glyph indices is required. This brings us to the matters of a data format for these lists of glyph indices and the tools that are required to create and maintain them.

Y2.1.1 Glyph list data format.

Since the list of glyphs to be drawn for a given character is required by a font, this data should be included in or with the
F
ont
IFF
file. One example is:

 FORM CMAP		// character mapping

 {

 CHUNK GLST	// data for a glyph list

 {

 long 0x4e00	// character to be described

 long 4	// number of glyphs needed to render this character

 long 0x1234	// glyph index 1

 long 0xDEAD	// glyph index 2

 long 0xDEED	// glyph index 3

 long 0x0002	// glyph index 4

 }

 ...

 CHUNK GLST	// data for a glyph list

 {

 long 0x4e01	// character to be described

 long 3	// number of glyphs needed to render this character

 long 0x0001	// glyph index 1

 long 0xFEED	// glyph index 2

 long 0xABED	// glyph index 3

 }

 etc.

 }

Thus, a set of CJK Ideographs can be depicted by defining a set of glyph list data.

Y2.1.2. Tool support for Glyph list data.

Method 1 (Impractical): Upgrade the font convertor program. The font convertor program uses windoze system code to render composite glyphs, thus the information for the one-to-many character-to-glyph mapping is already lost when the glyphs are rendered.

Method 2 (Preferred): A new tool is written which takes as input a
B
itmap
IFF
 file
and a text file containing the
glyph list
 data for each character required in the game. This input is converted into a
F
ont
IFF
 file. Thus, the example data shown in section Y.2.1.1 could be created from a text file:

 # UNICODE character number, number of glyphs (n), n glyph indices

 0x4e00, 4, 0x
12
34
, 0xDEAD, 0xDEED, 0x0002

 0x4e01, 3, 0x0001, 0xFEED, 0xABED

which would be written by the translator. The glyph indices MUST correspond exactly to the frames of the
B
itmap
IFF
 file
. This
B
itmap
IFF
 file is created using a script file such as:

 # script to make a Bitmap IFF file of 5 arbitrary glyphs

 #

 verbose 0			// no messages

 outputfile pic.iff	// name of bitmap iff file

 transparent 1		// pixels of number 0 are transparent

 globalpalette		// use a global palette for all frames

 nolocalpalette		// no separate palette for each frame

 inputfile glyph0.bbm	// will become frame 0

 inputfile glyph1.bbm	// will become frame 1

 inputfile glyph2.bbm	// will become frame 2

 inputfile glyph3.bbm	// will become frame 3

 inputfile glyph4.bbm	// will become frame 4

which is run through the tool "
$/wc5/util/lbm2iff
"
. More information on this tool will be available later
.

(
Note:
The graphic for e
ach glyph
can be created with an art package, such as DPaint.
)

Y2.2 Converting keyboard input to UNICODE.

To do:

Research DirectInput. Can it be made to convert keyboard input to UNICODE ?

(see also: unicode information, http://www.stonehand.com/unicode.html)

(see also, book: "Internationalization. Developing Software for Global Markets")

Y3 Miscellaneous.

Provide support for
writing text
right-to-left, up or down
 ?

Appendix Z. Fonts

The game uses TrueType Fonts. These are converted to another data format for inclusion in the game
, held within a
Font IFF file. Each TrueType font converted to the game's format will conform to the character mapping specified in the 1-byte character set
.
 It will be necessary for the translations department to approve each
TrueType font so we can be sure
it contains
all glyphs
required to represent the
1-byte character set
.

Since font glyphs are rendered in the game as bitmaps and a bitmap can be scaled to any given output resolution, any given glyph occupies the same percentage of the screen in every resolution (allowing for slight discrepencies in screen aspect ratios). In this way, the game's designers and
t
ranslators can be assured that text will look very similar in every screen resolution. Of course, in higher resolutions, characters will look smoother since pixels are smaller. For lower screen resolutions, the look of some glyphs may be improved by a graphic artist.

Fonts may be displayed in any single (solid) colour. At present, there is no support for multi-coloured fonts. Bold, underlined and italic fonts may also be supported providing that they can be made to look good.

In order to support a one-to-many character-to-glyph mapping it will be necessary for a font to contain a character map, (see Appendix Y. Character Sets). However, to save data and simplify the translation of the game to languages whose characters are representable in the 1-byte character set, the absence of this character map can indicate a one-to-one mapping of
the
1-byte character map
 to
a set of 256 bitmap frames
.

�PAGE �

�PAGE �
15
�

