

�

Wing Commander 5

Technical Programming Specifications

Origin/EA Confidential

Version 2.0

� SAVEDATE \@ "M/d/yy" * MERGEFORMAT �10/�15/96

�TABLE OF CONTENTS

� TOC \o "1-2" �PROJECT OVERVIEW	� GOTOBUTTON _Toc370719109 � PAGEREF _Toc370719109 �4��

Target Hardware	� GOTOBUTTON _Toc370719110 � PAGEREF _Toc370719110 �4��

Current Project Status	� GOTOBUTTON _Toc370719111 � PAGEREF _Toc370719111 �4��

Resources	� GOTOBUTTON _Toc370719112 � PAGEREF _Toc370719112 �4��

Ship Date	� GOTOBUTTON _Toc370719113 � PAGEREF _Toc370719113 �5��

SKU Plan Status	� GOTOBUTTON _Toc370719114 � PAGEREF _Toc370719114 �5��

Category	� GOTOBUTTON _Toc370719115 � PAGEREF _Toc370719115 �5��

Competitive Circumstances	� GOTOBUTTON _Toc370719116 � PAGEREF _Toc370719116 �5��

Key Features	� GOTOBUTTON _Toc370719117 � PAGEREF _Toc370719117 �5��

New Platforms	� GOTOBUTTON _Toc370719118 � PAGEREF _Toc370719118 �7��

Why This is an Origin Product	� GOTOBUTTON _Toc370719119 � PAGEREF _Toc370719119 �7��

PROGRAMMING MILESTONES	� GOTOBUTTON _Toc370719120 � PAGEREF _Toc370719120 �8��

GAME SHELL AND SYSTEMS	� GOTOBUTTON _Toc370719121 � PAGEREF _Toc370719121 �12��

Development Paradigm	� GOTOBUTTON _Toc370719122 � PAGEREF _Toc370719122 �12��

Main Program Loop	� GOTOBUTTON _Toc370719123 � PAGEREF _Toc370719123 �12��

Memory Manager	� GOTOBUTTON _Toc370719124 � PAGEREF _Toc370719124 �13��

User Input Manager	� GOTOBUTTON _Toc370719125 � PAGEREF _Toc370719125 �14��

Graphics Layer	� GOTOBUTTON _Toc370719126 � PAGEREF _Toc370719126 �15��

3D SYSTEM	� GOTOBUTTON _Toc370719127 � PAGEREF _Toc370719127 �18��

Timings	� GOTOBUTTON _Toc370719128 � PAGEREF _Toc370719128 �18��

Software rendering vs. Hardware acceleration	� GOTOBUTTON _Toc370719129 � PAGEREF _Toc370719129 �18��

3D Math	� GOTOBUTTON _Toc370719130 � PAGEREF _Toc370719130 �18��

Texture Manager	� GOTOBUTTON _Toc370719131 � PAGEREF _Toc370719131 �19��

Sorting	� GOTOBUTTON _Toc370719132 � PAGEREF _Toc370719132 �19��

Clipping	� GOTOBUTTON _Toc370719133 � PAGEREF _Toc370719133 �19��

Lighting	� GOTOBUTTON _Toc370719134 � PAGEREF _Toc370719134 �19��

World	� GOTOBUTTON _Toc370719135 � PAGEREF _Toc370719135 �20��

Rendering Pipeline	� GOTOBUTTON _Toc370719136 � PAGEREF _Toc370719136 �21��

FLIGHT / PHYSICS MODEL	� GOTOBUTTON _Toc370719137 � PAGEREF _Toc370719137 �26��

Dynamics	� GOTOBUTTON _Toc370719138 � PAGEREF _Toc370719138 �26��

Flight Variables	� GOTOBUTTON _Toc370719139 � PAGEREF _Toc370719139 �26��

Other Features	� GOTOBUTTON _Toc370719140 � PAGEREF _Toc370719140 �26��

SHIP SYSTEMS	� GOTOBUTTON _Toc370719141 � PAGEREF _Toc370719141 �27��

Overview	� GOTOBUTTON _Toc370719142 � PAGEREF _Toc370719142 �27��

Power Plant	� GOTOBUTTON _Toc370719143 � PAGEREF _Toc370719143 �27��

Powered Systems	� GOTOBUTTON _Toc370719144 � PAGEREF _Toc370719144 �28��

Engines (Thrusters)	� GOTOBUTTON _Toc370719145 � PAGEREF _Toc370719145 �29��

Guns / Missiles	� GOTOBUTTON _Toc370719146 � PAGEREF _Toc370719146 �29��

Repair	� GOTOBUTTON _Toc370719147 � PAGEREF _Toc370719147 �31��

Radar	� GOTOBUTTON _Toc370719148 � PAGEREF _Toc370719148 �32��

Font System	� GOTOBUTTON _Toc370719149 � PAGEREF _Toc370719149 �32��

Font Data Conversion Tool	� GOTOBUTTON _Toc370719150 � PAGEREF _Toc370719150 �34��

COCKPIT SYSTEM	� GOTOBUTTON _Toc370719151 � PAGEREF _Toc370719151 �36��

The Cockpit data format	� GOTOBUTTON _Toc370719152 � PAGEREF _Toc370719152 �36��

Communication System	� GOTOBUTTON _Toc370719153 � PAGEREF _Toc370719153 �38��

Artificial Intelligence System [AI]	� GOTOBUTTON _Toc370719154 � PAGEREF _Toc370719154 �39��

VCR Playback System	� GOTOBUTTON _Toc370719155 � PAGEREF _Toc370719155 �43��

GAMEFLOW	� GOTOBUTTON _Toc370719156 � PAGEREF _Toc370719156 �45��

TRANSITION SYSTEM	� GOTOBUTTON _Toc370719157 � PAGEREF _Toc370719157 �47��

VIDEO PLAYBACK SYSTEMS	� GOTOBUTTON _Toc370719158 � PAGEREF _Toc370719158 �47��

GAME SAVE CONSOLE	� GOTOBUTTON _Toc370719159 � PAGEREF _Toc370719159 �47��

USER OPTIONS CONSOLE	� GOTOBUTTON _Toc370719160 � PAGEREF _Toc370719160 �47��

Audio Options	� GOTOBUTTON _Toc370719161 � PAGEREF _Toc370719161 �47��

Controls	� GOTOBUTTON _Toc370719162 � PAGEREF _Toc370719162 �47��

Gameplay	� GOTOBUTTON _Toc370719163 � PAGEREF _Toc370719163 �47��

SIMULATOR	� GOTOBUTTON _Toc370719164 � PAGEREF _Toc370719164 �48��

MEDAL AND KILL SCOREBOARDS	� GOTOBUTTON _Toc370719165 � PAGEREF _Toc370719165 �48��

DEBRIEF SYSTEM	� GOTOBUTTON _Toc370719166 � PAGEREF _Toc370719166 �48��

[FLO] PROGRAM INTERPRETATION (DESIGN)	� GOTOBUTTON _Toc370719167 � PAGEREF _Toc370719167 �49��

Master Control Program [Mission Interpreter]	� GOTOBUTTON _Toc370719168 � PAGEREF _Toc370719168 �50��

Spaceflight System	� GOTOBUTTON _Toc370719169 � PAGEREF _Toc370719169 �51��

LIBRARIES AND TOOLS	� GOTOBUTTON _Toc370719170 � PAGEREF _Toc370719170 �53��

Sound System	� GOTOBUTTON _Toc370719171 � PAGEREF _Toc370719171 �53��

Language Freedom	� GOTOBUTTON _Toc370719172 � PAGEREF _Toc370719172 �54��

Movie Player	� GOTOBUTTON _Toc370719173 � PAGEREF _Toc370719173 �57��

Object Editor	� GOTOBUTTON _Toc370719174 � PAGEREF _Toc370719174 �63��

Mission Editor	� GOTOBUTTON _Toc370719175 � PAGEREF _Toc370719175 �67��

APPENDIX A - SOUND SYSTEM API	� GOTOBUTTON _Toc370719176 � PAGEREF _Toc370719176 �70��

Sound API	� GOTOBUTTON _Toc370719177 � PAGEREF _Toc370719177 �72��

Streamer API	� GOTOBUTTON _Toc370719178 � PAGEREF _Toc370719178 �81��

APPENDIX B - SCRIPTING LANGUAGE SPECIFICATION	� GOTOBUTTON _Toc370719179 � PAGEREF _Toc370719179 �89��

APPENDIX C - MISSION EDITOR	� GOTOBUTTON _Toc370719180 � PAGEREF _Toc370719180 �92��

APPENDIX D - DOCUMENT REVISION HISTORY	� GOTOBUTTON _Toc370719181 � PAGEREF _Toc370719181 �110��

�

�Project Overview

Target Hardware

PC-CD

Pentium 90 Local Bus or PCI Video (1 Meg for 8 bit color, 2 Megs for 16)

16 Megs RAM, 4X CD-ROM drive

Digital Sound Card for music, speech, and sfx 8 bit or 16 bit

Sony Playstation

Standard North American CPU, tandard d-pad controller

Current Project Status

	Script phase

Resources

The Wing Commander V internal development team is comprised of the following personnel.

	

Administration:

Rich Hilleman		Executive Producer

Dave Downing		Producer				22mm (man months)

Mark Day		Producer				22mm

Frank Roan		Project Director - PCCD			22mm

Tony Morone		Project Director - PSX			22mm

Billy Cain		Associate Producer - PSX			22mm

Adam Foshko		Associate Producer - PCCD		22mm

Ana Moreno		Associate Producer			18mm

Maddie Fox		Assistant Producer			18mm

Art:

Chris Douglas		Production Designer			12mm

Mark Vearrier		Art Director				22mm

Weston Giunta		Art Coordinator				22mm

Sean Murphy		Artist					13mm

Pauline Saab		Artist					11mm

Mark Leon		Artist					11mm

Beth Pugh		Artist					13mm

Dean McCall		Artist					13mm

R. Brunet (replacement)	Artist					13mm

Jennifer Ayers		Artist					11mm

Damon Waldrip		Artist					11mm

Steve Pietzsch		Artist					11mm

Jeff Wand		Artist					11mm

Programming - Game:

Pete Shelus		Lead Programmer - PCCD			22mm

Axel Brown		Lead Programmer - PSX			22mm

Hugh David		Programmer				22mm

Jason Hughes		Programmer				22mm

Andy Sommers 		Programmer				17mm

Programming - Engine & Tools

Paul Issac		Tools Director				6mm

Jason Yenawine		Programmer				12mm

Jeff Grills		Programmer				12mm

Ed Maurer		Programmer				6mm

Richard Lyle (rep)	Programmer				12mm

Video Production:

Jay Mahavier		Post Production Supervisor		12mm

Designers:

Phil Wattenbarger	Lead Designer				22mm

Ben Potter		Designer - PCCD				18mm

Jeff Shelton		Designer - PCCD				18mm

Scott Shelton (rep)	Designer - PCCD				18mm

Sean Mustakas		Designer - PSX				18mm

Marcus Merrell		Designer - PSX				18mm

John Guentzel		Designer - PSX				18mm

Brian Adams		Designer - PSX				18mm

Audio:

Stretch Williams		Audio Director				12mm

Martin Galway		Dialogue & FX Editor			12mm

George Oldziey		Composer				12mm

Ship Date

Projected sign-off: 	February 16, 1998

Projected ship: 	PCCD	February 1998

		PSX	March 1998

SKU Plan Status

Committed to Q4 1998.

Category

Interactive movie/space combat.

Competitive Circumstances

Wing Commander V targets existing Wing Commander fans, sci-fi action/simulation enthusiasts, and anyone interested in the interactive movie experience. The main competition will be from the Lucas Arts Star Wars line of products, as well as the release of X-Wing vs.Tie Fighter early next year.

Key Features

 ART:

16 bit color for spaceflight and movies

Point source lighting in spaceflight

Realistic textures for space objects

Larger and more richly detailed Capital Ships

Improved FX (explosions) for spaceflight

Better HUD graphics and layout design

Real-time rendered (vector graphics) cockpit displays

New game objects using existing high-end Alias tools

Deeper and more thorough design process for object conceptualization

Compositing of CG sets with practical sets and actors

Syd Mead alien conceptual futurist

Introduction of new alien race

Introduction of CG aliens (character animation)

Ever increasing realism and improved effects for cinematics

 PROGRAMMING:

Windows 95 Native Application

Full screen and windowed modes

Hardware acceleration where available

Next Generation Render Engine

640 x 480 x 16 bit

BSP Tree algorithms for perfect sorting

Articulated and detachable child objects

Ambient, diffuse and specular illumination

Materials modeling

Flat and Gouraud shading

Multiple light sources

Selectable face textures (i.e. damage textures, ship insignia, etc.)

Scaleable rendering

Spline path scripted cameras

Advanced Mission System

Graphical tool for mission layout and scripting

Mission language for complex missions

Dynamic briefings/debriefings

Advanced Artificial Intelligence

Tightly integrated with mission systems

A.I. to A.I. communications

A.I. scheduler

Physics System

Force effects

Particle system

Conservation of momentum

Enhanced flight dynamics

Advanced Sound System

Streamed digital music

Real time Dolby surround encoding

Doppler effect

Sound occlusion

VCR Playback

Player controlled recording and playback of missions

Highlight reels for debriefings

New Cockpit Systems

New cockpit displays

Dynamic MFD (Multi-Function Displays) activation/deactivation

New Platforms

Win95 and PSX represent new technologies. Wing 5 will be the first ‘ground-up’ development effort on these platforms to come out of Origin. The related shift in development tools and paradigms may cause unpredictable challenges.

Simultaneous Development

Wing 5 will follow an unprecedented simultaneous development schedule. All programmers will be responsible for writing and testing code on both platforms. While the perceived ship date for one game will be later, two complete games will be produced in a smaller amount of time.

16 Bit Color

Wing Commander V is being developed to run in 640 x 480 x 16 bit color mode. We will have to be concerned about what percentage of machines that will be out in the market will be able to perform acceptably at this resolution and bit depth.

Capital Ships

Rendering of capital ships is the big new technology of Wing Commander V. This will involve relatively complex modeling and occlusion models. Since this is entirely a new technological development, it is very difficult to accurately estimate the programming time line.

Why This is an Origin Product

Origin is credited for pioneering interactive movies with the Wing Commander line. More than five years after it was first released, the line is still a worldwide favorite and held as the benchmark in space combat simulations. Ensuing products--additional missions, spin-offs and sequels--have only strengthened its reputation.

�Programming Milestones

Summary of Programming status:

A new programmer has joined Maverick and is being successfully integrated into the team. The Programming Team is focusing on building the Mission and Object Editors to spec to meet the demands of stellar game design. 3D objects are loading from the Mission Editor into space. Native support is in for several 3D accelerator cards. The Spaceflight Engine is being designed with an open architecture to ensure reusability for future games.

= Task Complete

September Milestone 9/30/96:	STATUS	% COMPLETE	RESOURCE(S)

programming:

Sound System		In Progress	 90%	R Lyle>TBD

Language Support Designed		In Progress	 70%	T Morone

Win 95 Framework		Complete	100%	J Grills	

Memory Manager. PC/PSX		Complete	100%	J Grills

Fatal System	Complete	100%	J Grills

October Milestone 10/31/96	

programming:

Network R & D			In Progress	 40%		J Yenawine>J Grills

Fonts				In Progress 	 60%		H David

Space Created			Complete	100%		J Grills

File System				In Progress	 60%		J Grills, P Shelus

Lighting Model			In Progress	 60%		J Grills

Mission Editor			In Progress	 65%		E Maurer>A Sommers

Rasterization Functioning		In Progress	 60%		H David, J Grills

PSX Issues - R & D Hardware		In Progress 	 90%		A Brown

Virtual Keyboard			In Progress	 33%		J Yenawine>P Shelus

Cool Cameras			In Progress 	 20%		H David

Language Support Designed		In Progress	 70%		T Morone

Object System - 1st Pass		In Progress	 50%		J Grills, P Shelus

�November Milestone 11/30/96	STATUS	% COMPLETE	RESOURCE(S)

programming:

VCR Playback			Pending				H David

Object Editor Functional		In Progress	 34%		P Isaac>TBD

3D Rendering Engine			In Progress	 51%		J Grills

Briefing System			Pending				F Roan

3D System				In Progress	 42%		J Grills, H David

Advanced Sound System		Pending				R Lyle>TBD

Ship Systems			In Progress	 80%		P Shelus

Rough Menu System	In Progress	 10%		A Brown

December Milestone 12/31/96

programming:

Mission Script 			Pending				A Sommers

Movie System			Pending 				J Yenawine> A Brown

Final Object System			Pending				P Shelus, J Grills

Rough Gameflow			Pending				A Brown

Camera System			In Progress	 8%		H David

Debriefing System			Pending				F Roan

January Milestone 01/31/97

programming:

Rough Cockpits			Pending				H David

Rough AI				Pending				J Hughes

Physics Model			In Progress	 13%		P Shelus

Pilot Status				In Progress	 5%		A Brown

Rough CapShips			In Progress	 30%		J Grills

Ship Dynamics			In Progress	 16%		P Shelus

Enhanced 3D System			Pending			 	J Grills

Detailed Object System		Pending				J Grills

February Milestone 02/28/97

programming:

Communication System		Pending				J Hughes, H David

Enhanced Physics Model		Pending				P Shelus

Missions Playable (20%)		Pending				A Sommers

Enhanced AI				Pending				J Hughes

�March Milestone 03/31/97 	STATUS	% COMPLETE	RESOURCE(S)

Programming:

Detailed Cockpits			Pending				H David

Enhanced CapShips			Pending				J Grills

Player State				Pending				A Sommers

 April Milestones, 04/30/97

Programming:

Save/Load				Pending				A Brown

Comms Integrated (Data Impl)		Pending				H David

Options Complete			Pending				A Brown

Detailed Gameflow			Pending				A Brown

May Milestone 05/31/97

Programming:

Final Cockpits			Pending				H David

Sound Effects			Pending				H David

Nav Map Design			Pending				A Sommers

June Milestone 06/30/97

Programming:

Final Gameflow			Pending				A Brown

Final Cockpits In			Pending				H David

Nav Map				Pending 				A Sommers

July Milestone 07/31/97

Programming:

Log-In Screen			Pending 				A Brown

Training Simulator			Pending 				A Brown

Music Integration			Pending 				TBD

Enhanced AI Started			Pending 				J Hughes

August Milestone 08/30/97

Programming:

Medal Viewer			Pending 				A Brown

Final Gameflow			Pending 				A Brown

September Milestone 09/31/97 Alpha

Programming:

ALPHA				Pending				All PRGs

Bug Fixing Officially Starts		Pending 				All PRGs

Wingmen Profiles			Pending 				J Hughes

�

October Milestone 10/31/97 	STATUS	% COMPLETE	RESOURCE(S)

Programming:

Install Program			Pending 				T Morone

CapShip Tweaks			Pending 				J Grills

Language Support			Pending 				T Morone

November Milestone 11/30/97

Programming:

AI Tweaks				Pending 				J Hughes

GamePlay Balance Set		Pending 				F Roan

Movie Integration			Pending 				A Brown

December Milestone 12/31/97 Beta

Programming:

Demos				Pending 				T Morone

BETA				Pending 				All PRGs

Data Integration			Pending				All PRGs

Credits				Pending				A Brown

Bug Fixing Full-Force		Pending				All PRGs

January Milestone 01/31/98 Beta

Programming:

Finish Beta Cycle			Pending 				All PRGs

Fix Bugs				Pending 				All PRGs

February Milestone 02/28/98 Final

Programming:

FINAL version			Pending				All PRGs

Gold Master				Pending				All PRGs

Project:

FINAL				Pending 				All PRGs

SIGN-OFF				Pending				All PRGs

�GAME SHELL AND SYSTEMS

Development Paradigm

Wing Commander V is being developed simultaneously for Windows 95 and the Sony Playstation. In order to accomplish this, Wing Commander V is following a platform independent programming paradigm. Wrapper classes are being built around all the operating system and hardware specific portions of code, allowing each platform to access platform specific resources through a common interface. This allows all game specific coding to be used in identical form on all platforms, thus reducing the amount of redundant coding significantly.

Currently, Wing Commander V compiles and runs on both the PC Windows 95 platform as well as the Sony Playstation. All game code source files are identical for the two platforms. The only operating system and hardware specific coding lies below the abstracted wrapper classes.

Main Program Loop

Due to the platform independent nature of Wing Commander V, the main program loop is structured in a slightly different manner than other applications. Below is the current main loop for Wing V.

void Game::wing5(void)

{

	Os::install();

	GL::install();

	IoWinManager::install();

	player = NEW Player();

	while (!isOverFlag)

	{

		PROFILE_START("main loop");

		World::newTurn();

		PROFILE_CALL(Clock::update(), "clock");

		PROFILE_NEXT(Os::update(), "os update");

		if (isOverFlag)

			break;

		PROFILE_CALL(debugIO(), "debug io");

		PROFILE_NEXT(IoWinManager::processQueue(), "io process");

		PROFILE_NEXT(IoWinManager::update(), "io update");

		PROFILE_NEXT(GL::lock(), "GL lock");

		PROFILE_NEXT(IoWinManager::draw(), "io draw");

		PROFILE_NEXT(GL::unlock(), "GL unlock");

		PROFILE_NEXT(Clock::frameLimit(), "frame limit");

		PROFILE_STOP("main loop");

		PROFILE_UPDATE();

	}

	delete player;

	player = NULL;

}

The first three lines of the function setup the system. First, the operating system class is installed via “Os::install()”. This operating system class provides a consistent interface to the system’s timers, user input, etc. regardless of platform. Secondly, the graphics layer is installed via “GL::install()”. This class provides a platform independent interface to the display hardware. The third line installs what is called the “IoWinManager”. This class provides platform independent input commands which are interpreted from the platform by the Os class.

The loop then increments the world counter, and updates the clock and operating system. The next portion is the meat of the loop. The IoWinManager has a queue of processes which receive input commands. These processes are the Player, Spaceflight, and Gameflow. This model also allows for easily overlaying screens like pause plaques, or option screens by just placing a process at the front of the queue. Once the IoWinManager queue has updated, the graphics layer locks the video surface, the IoWinManager draws the current frame, and the graphic surface is unlocked.

Memory Manager

PC

Wing Commander V allocates a fixed size heap at startup. This allows us to develop on Windows 95 platforms without worrying about exceeding our memory restrictions. In addition, debugging information regarding memory overwriting, memory leaks, etc. is already implemented.

PSX VRAM

VRAM is divided up into ‘zones’. Each ‘zone’ is given an ID_TAG. An ID_TAG is a long word typically representing a four letter ASCII sequence (No, not THOSE four letters!!). Each zone is then broken down into ‘slots’, which are then broken down into ‘blocks’. Typical zone ID’s are ‘COCK’ (cockpit), ‘TERR’ (terrain), ‘CLUT’ (palettes), ‘FONT’.

Slots can be allocated to specific zones by referring to the relevant zone’s ID_TAG or the ‘grab bag’ method with just finds the first available slot of sufficient size. Potential zones that you may want to treat specially would be ‘CLUT’ or ‘FONT’ etc.

Pixel data within a zones can be temporarily saved off to main ram in the event that a block of VRAM is needed in a hurry. (Need to throw up a NavMap or Option Screen?) The zone pixel data can then be replaced easily with one simple LoadImage(). This removes the hassles involved with freeing and the reallocating all slots within the zone.

//--

// IdTag = simple 4 character labels

//--

typedef unsigned long IdTag;

#define ID_TAG(a,b,c,d) ((IdTag)((d)<<24)|((c)<<16)|((b)<<8)|(a))

#define ID_CHARS(id) (byte)((id)),(byte)((id)>>8),(byte)((id)>>16),(byte)((id)>>24)

// DATA TYPES

typedef struct VRArea

{

	dword		flags;			// flags

 	IdTag		id;			// id of this area

	int32		x,y,width,height;	// area information

 	void		*buffer;		// main ram storage of our VRAM area

			

	struct VRSlot	*slots;			// slots in this area

	struct VRArea	*next;			// next area

} VRArea;

typedef struct VRBlock

{

	dword		flags;			// block flags

	int32		width;	// width of the block, height is determined by the slot

	

	void		*shape;			// image in block

	int32		x,y;			// location of shape in Vram

	

	struct VRArea	*from;			// allocated from which area

		

	struct VRBlock	*next;			// next block	

	struct VRBlock	*prev;			// prev block

} VRBlock;

typedef struct VRSlot

{

	int32		y;			// y location of slot

	int32		height;			// height of the slot

	

	struct VRBlock	*blocks;		// blocks in this slot

	struct VRSlot	*next;			// next slot

	struct VRSlot	*prev;			// prev slot

} VRSlot;

//---

#define MAX_ZONES 			8

class	Vram

{

	private:

		static VRArea		*TheZones[MAX_ZONES];

		static VRArea		*gAreas; // linked list of allocated areas

	public:

		static void		install(void);

		static void		remove(void);

		static VRBlock *	alloc(int32, int32);

		static VRBlock *	alloc(IdTag, int32, int32);

		static void		free(VRBlock *);

		static VRArea *	zone_alloc(IdTag ,int32 ,int32 ,int32 ,int32);

		static int32		zone_free(IdTag);

	private:

		static VRArea *	area_alloc(IdTag ,int32 ,int32 ,int32 ,int32);

		static void		area_free(VRArea *);

		static int32		save_area_alloc(VRArea *);

		static int32		save_area_prealloc(VRArea *,void *);

		static int32		restore_area(VRArea *);

		static VRBlock *	block_alloc(VRArea *,void *,int32,int32);

		static void		block_free(VRBlock *);

		

};

User Input Manager

User input is abstracted in a similar manner as the operating system and other platform hardware. Wing Commander V implements a “virtual keyboard” system. This system takes platform independent input commands from the IoWinManager and uses a Playkey class in order to convert them into game commands.

Example IoWinManager events:

enum IoEvent

{

	IoEventMouseMove,

	IoEventMousePress,

	IoEventMouseRelease,

	IoEventMouseSetCursor,

	IoEventKeyPress,

	IoEventKeyRelease,

	IoEventKeyChar,

	IoEventJoyX,

	IoEventJoyY,

	IoEventJoyZ,

	IoEventJoyPress,

	IoEventJoyRelease,

	IoEventDestroy

};

the IoWinManager event structure:

struct IoEventStruct

{

	IoEvent type;

	int x;

	int y;

	int down;

	union

	{

		int arg;

		int key;

		int ch;

		int button;

	};

	// -q- i would like offset to be in the union, but 'real' could be a class

	// and c++ does not allow unions to contain members that have constructors

	real offset;

	IoEventStruct *next;

};

Example Playkey events:

enum PKey

{

	PKeyNothing,

	PKeyPitch,

	PKeyYaw,

	PKeyRoll,

	PKeySlideX,

	PKeySlideY,

	PKeySlideZ,

	PKeyAccelerate,

	PKeyStop,

	PKeyThrottle,

	PKeyAfterburner,

	PKeyFireGuns,

	PKeyFireMissile,

	PKeyToggleGuns,

	PKeyRotoPitch,

	PKeyRotoYaw,

	PKeyRotoRoll,

	PKeyRotoZoom,

	

	PKeyView0,

	PKeyView1,

	PKeyView2,

	PKeyMax

};

The game code never refers to specific input devices for commands. Game code refers exclusively to game events (i.e. playkey events). This allows easy input control remapping, giving the player the flexibility to define their own game controls.

Since Wing Commander V is being developed for the Sony Playstation as well as Windows 95, it is necessary to have simulated analog input for digital input devices. Therefore, the Playkey defines the inputs for all game events as numbers ranging from -1 to 1, allowing analog simulation for digital input.

Graphics Layer

The display hardware is abstracted through the graphics layer class. The BaseGL defines the most basic functionality.

class BaseGL

{

protected:

	static int screenWidth;

	static int screenHeight;

	static int screenDepthBytes;

	static int clipStack;

	static int clipX0;

	static int clipY0;

	static int clipX1;

	static int clipY1;

	static int clipOn;

	static ClipInfo clipRegion[GL_CLIP_STACK];

	static Color colorWhite;

	static Color colorBlack;

	static Color colorRed;

	static Color colorGreen;

	static Color colorBlue;

	static Color colorTransparent;

protected:

	static void resize(int oldWidth, int oldHeight, int oldDepthBytes, int newWidth, int newHeight, int 	newDepthBytes);

	static void findMajorColors(void);

public:

	static void install(void);

	static void remove(void);

	// size functions

	static int width(void);

	static int height(void);

	static int depthBytes(void);

	static int depthBits(void);

	// color functions

	static Color white(void);

	static Color black(void);

	static Color red(void);

	static Color green(void);

	static Color blue(void);

	static Color transparent(void);

	// bitmap pixel indexing functions

	static Pixel8 *index(Pixel8 *p, int x, int y, int pitch);

	static Pixel16 *index(Pixel16 *p, int x, int y, int pitch);

	static const Pixel8 *index(const Pixel8 *p, int x, int y, int pitch);

	static const Pixel16 *index(const Pixel16 *p, int x, int y, int pitch);

	// clipping functions

	static void clipPush(int x0, int y0, int x1, int y1);

	static void clipOff(void);

	static void clipPop(void);

};

class GL_abstract

{

public:

	virtual ~GL_abstract(void);

	

	// access primitives

	virtual void lock(void) = 0;

	virtual void unlock(int display) = 0;

	

	// drawing primitives

	virtual void pointNoClip(int x, int y, Color color) = 0;

	virtual int line(int x0, int y0, int x1, int y1, Color color) = 0;

	virtual int circle(int x, int y, int radius, Color color) = 0;

	virtual void bitmap(const Bitmap *, int x, int y, int frame, int flags) = 0;

	// palette functions

	virtual PaletteData *paletteCreate(const Palette *pal) = 0;

	virtual void paletteDestroy(PaletteData *palData) = 0;

	// material primitives

	virtual MaterialData *materialCreate(int r, int g, int b) = 0;

virtual MaterialData *materialCreate(const Pixel8 *bitmap, int width, int height, const Palette *pal, int transparency) = 0;

	virtual void materialDestroy(MaterialData *mat) = 0;

	

	// polygon primitives

	virtual void polygonViewport(int x0, int y0, int x1, int y1,

	real *centerX, real *centerY, real *halfWidth, real *halfHeight,

	real *dpCenterX, real *dpCenterY, real *dpHalfWidth, real *dpHalfHeight) = 0;

	virtual int polygonDoublePixel(int on, int x0, int y0, int x1, int y1) = 0;

	virtual void polygonListStart(void) = 0;

	virtual void polygon(MaterialData *material, const PolyVertex *polyVertex, int vertexCnt) = 0;

	virtual void polygonListStop(void) = 0;

};

Further graphics layers are defined for each particular set of hardware. Currently, graphics layers have been written for the Playstation video display, Direct Draw, PC Software Rendering, Direct 3D, and the 3Dfx accelerator card. In the case of the Windows 95 version of Wing Commander V, the various graphics layers are loaded via DLL which will allow us to easily add support for future 3D accelerator cards.

�3D SYSTEM

Timings

Note: All timings done on a P90 with a “typical” Windows ’95 setup (hardware page flipping, hardware bitblt).

Capital Ship

30% draw

291 input polygons

120 output polygons (292 triangles)

2 directional lights

raster�width�height�depth�back buffers�fps��wu�320�240�16�2�55 ��wu�512�384�16�2�36��wu�640�480�16�2�27��wu�800�600�16�1�20 ��wu�1024�768�16�1 system�5.8��3dfx�640�480�16�1�51��

Box Interior

100% draw

24 input polygons

12 output polygons (28 triangles)

2 directional lights

raster�width�height�depth�back buffers�fps��wu�320�240�16�2�55��wu�512�384�16�2�26��wu�640�480�16�2�18��wu�800�600�16�1�12.25��wu�1024�768�16�1 system�4.2��3dfx�640�480�16�1�60��

Software rendering vs. Hardware acceleration

Our rendering pipeline is being developed in order to support full software rendering, hardware acceleration through Microsoft’s Direct3D, as well as native support for various 3D hardware accelerators. Currently, Wing Commander V runs in all three configurations.

3D Math

The 3D math functions for Wing Commander V will consist of functions that return mathematically correct result, as well as very fast functions that return reasonable approximate values. Currently implemented are matrices (including all standard binary operations), as well as vectors (including all standard binary operations). It is planned to implement a quaternion class in order to allow for simple linear interpolations for orientation matrices.

Texture Manager

This is the part of the system that loads and maintains the textures for rendering. 2D VRAM memory management for the Sony Playstation has been implemented in order to maximize texture placement in memory. Due to the small amount of video memory remaining on PC video cards after allocating draw buffers (as low as ~800k), we are exploring higher polygon count, low texture meshes.

Sorting

Currently, each object in the world has its own BSP sorted mesh, allowing perfect sorting of individual objects. Not only does this allow for correct intra-object sorting, but it also aids in speeding up texture mapping by reducing cache misses since all of the object’s polygons are rendered in a single pass while its texture map is locked.

Inter-object sorting is accomplished by generating a dynamic BSP tree for all the objects in the world on the fly. This is currently working, except in the case of intersecting objects. The current plan for solving this problem is to resort to depth sorting the faces of the intersecting objects together. Since this case rarely occurs, the slightly imperfect sorting will most likely be missed. The added benefit is that this solution works for the Playstation as well as the PC.

Clipping

Objects are first checked against the viewing pyramid looking for trivial object rejections. Objects which are not trivially rejected undergo strict 3D clipping against the pyramid. The near plane is scaled the 1 in order to simplify clipping operations. By clipping polygons in 3D rather than in 2D, our software rasterizers do not need to worry about clipping to the screen boundaries, resulting in a faster rasterizer.

Lighting

Dynamic lighting is implemented for Wing Commander V. The game currently supports ambient, point, and directional lighting. For software rendering, we are using monochromatic lights (Ramp model). Hardware rendering makes full use of colored lighting (RGB model). Individual polygons can be flat shaded (Lambert shaded), our Gouraud shaded with specular highlights.

enum LightType

{

	LightParallel,

	LightPointObject,

	LightPointVertex,

	LightSpot

};

class Light : public Object

{

private:

	LightType type;

	ColorVector intensity;

	real intensity_mono;

	real range;

	real rangeSquared;

protected:

	void load(Iff *iff);

	void computeMono(void);

public:

	static Object *create(Iff *iff);

public:

	Light(LightType newType=LightParallel);

	virtual ~Light(void);

	// render routines

	virtual void addToCamera(void);

	// type routines

	LightType getType(void) const;

	void setType(LightType newType);

	// intensity routines

	void getIntensity(Vector *intense) const;

	void getIntensity(real *intense) const;

	void setIntensity(real newR, real newG, real newB);

	void changeIntensity(real deltaR, real deltaG, real deltaB);

	// range routines

	real getRange(void) const;

	real getRangeSquared(void) const;

	void setRange(real newRange);

	void changeRange(real deltaRange);

	// light direction routines

	void getDirection(Vector *dir) const;

};

World

The world contains the lists of objects that exist in the game. These lists are segregated into various types in order to facilitate quick searches and faster collision detection.

const int WORLD_OBJLIST_UNKNOWN = -1;

const int WORLD_OBJLIST_TANGIBLE = 0;

const int WORLD_OBJLIST_BULLET = 1;

const int WORLD_OBJLIST_INTANGIBLE = 2;

const int WORLD_OBJLIST_CNT = 3;

// ===

class World : public IoWin

{

private:

	static int turnCount;

	static int changesAllowed;

	static ObjectList *objectList[WORLD_OBJLIST_CNT];

	static ObjectList *cameraList;

	static real ambientLightR;

	static real ambientLightG;

	static real ambientLightB;

public:

	World(void);

	virtual ~World(void);

	virtual void update(void);

	virtual void draw(void) const;

	static void install(void);

	static void remove(void);

	static int turn(void);

	static void newTurn(void);

	static real frameTime(void);

	// object list changing routines

	static void allowObjectChanges(void);

	static void disallowObjectChanges(void);

	static void addObject(Object *obj);

	static void killObject(const Object *obj);

	static void removeObject(const Object *obj);

	static const Object *findNextObject(int list=WORLD_OBJLIST_UNKNOWN, const Object 						*obj=NULL);

	// camera routines	

	static void addCamera(Camera *cam);

	static void removeCamera(const Camera *cam);

	static void cameraDumpDebug(void);

	static void addObjectListsToCamera(Camera *cam);

	static void addObjectListsToCockpit(Cockpit *cockpit);

	// light routines

	static void setAmbient(real r, real g, real b);

	static real ambientR(void);

	static real ambientG(void);

	static real ambientB(void);

};

The world has the ability to lock and unlock the object database. This is so that we can guarantee that object list is not being modified while the object lists are updating. By doing so, we make it much simpler to implement a multiplayer version of Wing Commander.

Additionally, the World class has been modified so that the game can either run with either dynamics or fixed object database updates. In other words, Wing Commander V can either run like a conventional game which renders every object update, or it can update the object database at a fixed rate of 60 cycles per second. The advantage to fixed object database updates is that it simplifies collision detection and artificial intelligence, as well as increases the accuracy of the simulation.

Rendering Pipeline

Every update loop, the IoWinManager goes through each of its “windows” and sends a draw command to it. In the case of the World, the draw command instructs the window do render the camera list for the world. Within this camera render occurs the 3D rendering of objects, the background starfields and dustfields, the cockpit HUD, everything that gets drawn on the screen.

The following charts document the flow of control in order to draw a single frame in spaceflight. Note that the chart starts with “Draw Frame”. The second set of charts are “magnifications” of the systems glossed over in the first set of charts.

�� EMBED Visio.Drawing.4 ����� EMBED Visio.Drawing.4 ����� EMBED Visio.Drawing.4 ����� EMBED Visio.Drawing.4 ����FLIGHT / PHYSICS MODEL

Dynamics

Wing 3 and 4 lost the feeling of realism that was in the first two incarnations of the game. Wing Commander V implements a dynamics model that brings back that feeling of spaceflight.

The physics model is basically simple Newtonian physics. Each object is described with a mass and a velocity. Forces act on the objects, generating an acceleration according to the equation F=ma. In order to keep the feeling of Wing Commander, these models are being modified by what can be thought of as “inertial dampeners”.

Spaceships in the Wing Commander universe are supposed to move generally in the direction they are facing. In order to do this, the thrusters on the ship attempt to compensate by applying accelerations in order to keep the ship’s velocity vector pointing in the same direction as the forward vector. Because the ships have limited acceleration capabilities, an afterburning ship can experience an “afterburner slide” by rotating their ship.

Flight Variables

Here are the parameters that designers will be able to set in order to define a particular spaceship type’s flight characteristics:

Mass

Maximum yaw rate

Maximum pitch rate

Maximum roll rate

Maximum rotational force (acceleration)

Maximum velocity with minimal (0%) input from power plant

Maximum velocity with average (33%) input from power plant

Maximum velocity with maximum (100%) input from power plant

Maximum afterburner velocity

Maximum translational force (acceleration)

Maximum velocity for a spaceship is dependent on the amount of energy input from the power plant. Designers will specify three control points to maximum velocity based on 0%, 33% and 100% power input. A quadratic (smooth) curve is computed between these three control points so that when the player adjusts the power input to the engines (thrusters), the resulting maximum velocity will track a smooth curve, yet still allowing the designers complete control of the spaceship’s maximum velocity.

Other Features

Ultimately, we will be implementing a relatively realistic collision resolution system that will cause proper rotations and translations due to collisions or nearby explosions. Also, by modeling motions via forces, it is possible to create interesting objects in space like gravity and ant-gravity objects, shock waves, etc.

�SHIP SYSTEMS

Overview

Every spaceship in Wing Commander V will has a power plant associated with it. It is the only required system for a ship. Designers then attach various powered ship systems to this power plant in order to add functionality to the spaceship. By doing so, it is possible have damage to the power plant effect all ship systems, easily reproduce the effect of the “Leech missile”, as well as have various ship systems steal power from the remaining systems.

Power Plant

The ship’s power plant holds a list of all the powered systems attached to it. It keeps track of the percentage of power to send to each of these systems. Every update, the power plant distributes the power based on its operating efficiency.

class PowerPlant

{

private:

	real maxDamagePoints;	

	real damagePoints;		

	real damageCutOff;		

	real efficiency;

	

	int enginesIndex;

	int gunsIndex;

	int shieldsIndex;

	int numSystems;

	int lockStatus[MAX_SYSTEMS];

	real percentage[MAX_SYSTEMS];

	PoweredSystem *systemList[MAX_SYSTEMS];

public:

	PowerPlant(void);

	~PowerPlant(void);

	void init(real maxDamage, real cutoff);

	

	// Systems

	void addSystem(PoweredSystem *system);

	void lockSystem(PoweredSystem *system);

	void unlockSystem(PoweredSystem *system);

	// Percentages

	real getPercentage(PoweredSystem *system);

	void setPercentage(PoweredSystem *system, real newPercentage);

	void incrementPercentage(PoweredSystem *system, real increment);

	// Damage

	real getMaxDamagePoints(void);

	real getDamagePoints(void);

	void applyDamage(real damage);

	void repairDamage(real repair);

	void update(void);

};

The power plant provides the ability to dynamically alter the percentages of power sent to the various system. Raising the percentage given to one system will proportionally reduce the percentages sent to the remaining systems. An exception to this rule is for “locked” systems. The power plant can lock a particular system so that changes made for other systems will not effect the amount of power being sent to the locked system.

Powered Systems

All of the optional ship systems will derive from the PoweredSystem class. This class holds the information regarding the size of the energy pool, the amount of energy in the pool, as well as the equation for converting power plant energy into powered system energy. By deriving all ship systems from the PoweredSystem class, we guarantee that the systems are “power aware”.

enum PoweredSystemType

{

	PoweredSystemRepair,

	PoweredSystemEngines,

	PoweredSystemShields,

	PoweredSystemGuns,

	PoweredSystemUnknown,

	MaxPoweredSystemTypes

};

class PoweredSystem

{

	friend class PowerPlant;

protected:

	Ship *ship;

	

	PoweredSystemType type;

	

	real	pool;			// amount of energy currently in the pool

	real	poolMax;		// how much energy the pool can hold

	real minimum;

	real normal;

	real maximum;

	

	real coefficientA;

	real coefficientB;

	real coefficientC;

	real maxDamagePoints;	

	real damagePoints;		

	real damageCutOff;		

protected:

	

	void computeCoefficients(void);

	real calculatePower(real percent);

	

	virtual void addPower(real percent);

public:

	PoweredSystem(void);

	~PoweredSystem(void);

	void init(PoweredSystemType newType, real newPoolMax, real min, real norm, real max);

	void setShip(Ship *newShip);

	PoweredSystemType getType(void);

	real getEnergyPool(void);

	real getEnergyPoolMax(void);

	int hasPower(void);

	real drawPower(real amount);

	// Damage

	real getMaxDamagePoints(void);

	real getDamagePoints(void);

	void applyDamage(real damage);

	void repairDamage(real repair);

	virtual void update(void);

	virtual void alter(void);

};

The PoweredSystem class also keeps track of the current damage state of the system. It is the responsibility of each specific system to use the current damage state to effect the efficiency of the system.

Engines (Thrusters)

A ship without engines cannot move. The thrusters provide a ship the means of applying translational and rotational accelerations in order to effect rotation rates and velocity. The following is the current version of the Engines class.

class Engines : public PoweredSystem

{

private:

	real maxSpeed;

	real afterburnerTotal;	// total seconds of afterburner fuel

	real afterburnerLeft;	// how many seconds are left

private:

	virtual void addPower(real percent);

public:

	Engines(void);

	~Engines(void);

	real getMaxSpeed(void);

	

	void setAfterburnerTotal(real time);

	real getAfterburnerTotal(void);

	real getAfterburnerLeft(void);

	void decrementAfterburnerTime(real delta);

	virtual void update(void);

};

Currently, the engines only provide information regarding maximum velocity, and afterburner fuel. This class will eventually determine all the rotational rates, as well as afterburner velocities for a particular ship, rather than storing this information in the dynamics.

Guns / Missiles

These two systems define the offensive capabilities of a spaceship.

struct GunArray

{

	int bulletIndex; 		// what kind of bullet this array fires

	int numGuns;	 	// total number of guns in this array

	Vector *hardPoints[MAX_GUNS_IN_ARRAY];	// location of hardpoints

	real energy;		// how much energy per gun

	real delay;			// refire delay for each single gun firing

	int lastGunFired;		// which gun in this array was last fired

	int fireReady;		// can we fire yet

	Timer timer;			// refire timer

};

class GunSystem : public PoweredSystem

{

private:

	int numGunHardpoints;

	Vector gunHardpoints[MAX_GUN_HARDPOINTS];

	

	int numGunArrays;

	GunArray gunArrayList[MAX_GUN_ARRAYS];

	int fullGuns;

	int activeArray;

	int linkedGuns;

private:

	virtual void addPower(real percent);

	void fire(void);

public:

	GunSystem(void);

	~GunSystem(void);

	

	void toggleFullGuns(void);

	void toggleLinkedGuns(void);

	void toggleGuns(void);

	

	void addGunHardpoint(real hp_x, real hp_y, real hp_z);

	void addGun(int type, int hardpointIndex);

	virtual void update(void);

	virtual void alter(void);

};

The gun system collects power from the power plant in a “gun pool”. Energy from this gun pool is used for firing the energy bolts. The system can shoot one particular gun array (activeArray), or all gun arrays at once (fullGuns). An additional feature is the “linkedGuns” flag. This allows the guns in a single array to fire at once (linked firing), or fire in an alternating pattern (unlinked firing).

struct Hardpoint

{

	int maxMissiles;	// maximum number of missiles that can be attached

	

	Vector location;	// location of the hardpoint relative to object center

};

struct MissileArray

{

	int missileIndex;			// type of missile in this array

	int numMissiles[MAX_HARDPOINTS]; 	// how many on hardpoints

	Hardpoint *hardpoints[MAX_HARDPOINTS];	// the actual hardpoints

	real refireDelay;			// delay between missile launches

int lastHardpointFired;		// which hardpoint last fired, for // alternating firing

	int fireReady;				// has the refire delay been exceeded

	Timer timer;				// missile refire timer

}

class MissileSystem : public PoweredSystem

{

private:

	int numMissileHardpoints;

	Hardpoint missileHardpointList[MAX_HARDPOINTS];

	int numMissileArrays;

	MissileArray missileArrayList[MAX_MISSILE_ARRAYS];

	int activeHardpoint;

private:

	virtual void addPower(real percent);

	void fire(void);

public:

	MissileSystem(void);

	~MissileSystem(void);

	

	void addGun(int type, real hp_x, real hp_y, real hp_z);

	virtual void update(void);

	virtual void alter(void);

};

The missile system works in a very similar manner as the gun system, except the missile system does not keep strict tabs on the amount of power available in the pool. This system only cares that there is SOME power going to the system.

Repair

The repair system determines which of the ship systems are damaged, prioritizes the repairs, and then begins repairing the most important and most damaged systems. Once a particular system has fallen to zero damage points left, the system is considered destroyed and repairs cannot be made to the system.

enum RepairStatus

{

	RepairStatusNormal,

	RepairStatusDamaged,

	RepairStatusCritical,

	RepairStatusDestroyed

};

struct RepairRecord

{

	int isPowerPlant;

	PoweredSystemType type;

	RepairStatus status;

	real percentRepaired;

};

class Repair : public PoweredSystem

{

private:

	int numRepairRecords;			// number of repair records

	RepairRecord repairRecordList[MAX_SYSTEMS + 1]; 	// +1 for power plant

	real	 repairRate;				// damage units/second

private:

	virtual void addPower(real percent);

	void generateRepairRecordList(void);

	int getSystemToRepair(void);

public:

	Repair(void);

	~Repair(void);

	virtual void update(void);

};

Currently, the repair system uses a hard coded priority list to determine the order of repairs. It is possible that we may move to a dynamically alterable priority list.

Radar

This system is currently not implemented as a PoweredSystem, but as a cockpit display since only the player has a radar. The current radar is the traditional Wing Commander radar system. Dots in the center are in front, dots in the middle ring are above, left, right, and below, and the dots on the outer ring are behind. Here is the current CockpitRadar class:

class CockpitRadar : public CockpitGauge

{

private:

	Color circleColor;

	Color badGuyColor;

	int radarX;

	int radarY;

	int radarR;

	int *lookup;

private:

	Object *me;

public:

	

	CockpitRadar(Cockpit *owner);

	virtual ~CockpitRadar(void);

	virtual void setViewport(int vx0, int vy0, int vx1, int vy1);

	virtual void update(void);

	virtual void draw(void) const;

};

Currently the radar display shows friendlies and enemies, regardless of the distance. We will need to address whether or not we would like to implement visible ranges for the radar display. If the radar system has a limited range, it is possible for the player to get involved in a dogfight and stray a great distance from the fray. At that point, the player may be too far away to know where the remaining ships are, resulting in very frustrating game play.

Font System

Status: PC & PSX versions written and tested in standalone programs. Ready to be included in game database.

The Font System is designed to handle all of the text output in the game. In order that this be as simple as possible, a Font Class provides a high-level interface. For example, to an application programmer, the Font System would look like this:

#include "font.h"

void main (void)

{

 // initialise graphics and file systems

 Font F ("fontdata.rgb", "fontdata.pal", 8, 8);

 F.Load ();

 F.PutStr ("hello world\n");

}

This is an example of the simplest use of the font class. The constructor call does nothing with the data file names except store them for future use in the Load function. This allows for Global Font Objects, without requiring the File System to be initialised at the program's startup time. The filenames show where the data for the font is held, (see also section Font Data Conversion Tool). The numbers following the filenames indicate the grid spacing with which the characters for the font were layed out.

Multiple fonts are supported, as in this example:

#include "font.h"

Font F1 ("font1dat.rgb", "font1dat.pal", 16, 16);

Font F2 ("font2dat.rgb", "font2dat.pal", 8, 8);

void main (void)

{

 // initialise graphics and file systems

 F1.Load ();

 F2.Load ();

 F1.PutStr ("hello world\n");

 F2.PutStr ("hello world\n");

}

For the PSX, we will also need to load the data for the font into VRAM. In order to effect this, and also to keep the high-level interface of the Font Class consistant between various target hardware (currently only PC & PSX), the PSX version of the PutStr function will conditionally call these two functions:

 // PSX-specific code to load font data into VRAM and set a texture page

 F.CopyToVRAM ();

 F.Set ();

This is invisible to the application programmer.

Care must be taken that multiple fonts do not cause problems with allocation of VRAM. These functions will work closely with the PSX VRAM Manager. (see section PSX VRAM Manager).

The data for a font is represented by pixels of 1-bit, 4-bits or 8-bits.

However, on the PSX, there is no reason to have the data any less than 4-bits per pixel, since this is the smallest size of texture data that can be held in PSX VRAM.

Further functionality of the Font Class can be seen by using the following example code:

#include "font.h"

void main (void)

{

 // initialise graphics and file systems

 Font F ("fontdata.rgb", "fontdata.pal", 8, 8);

 F.Load ();

 F.Report ();

}

The Report function displays text showing features of the Font Class such as:

Proportional Spacing:

When font data is loaded, information for proportional spacing is automatically calculated. An application programmer can therefore simply call:

 F.Proportional (1);

to turn on proportional spacing, and:

 F.Proportional (0);

to turn it off.

Spacing of characters:

There is a function, Space, which allows the programmer to set the width in pixels of a space character.

Transparency:

Calls to:

 F.Transparency (1);

 F.Transparency (0);

respectively, will turn transparency on and off (rather quickly !).

The function TColour allows the programmer to specify which colour is to be treated as the transparent colour.

Positioning of Text:

The Font Class also supports positioning of text in two ways. Firstly, a Font Object has a cursor with x & y screen coordinates, which are updated by the function PutStr(const char *s). This function also handles a newline character. An additional function, LMargin, sets the x position to which a newline character returns the cursor. MoveTo(x,y) sets the cursor to x,y. The cursor x,y positions may also be read and set directly.

There is also an overloaded version of the PutStr function which allows the programmer to position text anywhere, for example: Putstr ("Test text", 27, 153); This function does not affect the cursor.

Colouring of Text:

The function BaseColour re-maps the colours of the font data through the palette, thus allowing the same font to be used for printing in a different colour or set of colours.

Font Data Conversion Tool

At present, the data for a font is stored in a proprietary format. The data files are prepared from a Dpaint Brush file using a proprietary dos-based tool in the following way:

c:\> lbm_rgb -l -p -q -8 fontdata.bbm

This will produce the files "fontdata.rgb" and "fontdata.pal".

When called with no arguments, lbm_rgb produces the following output, which explains its usage:

c:\> lbm_rgb

lbm_rgb: (c) Origin 1996. Written by Hugh David

version: c++ test

description: produces a picture file <filename>.rgb

 with (2 byte each) width and height at the start of the file

 and a 256 entry 555 RGB palette file <filename>.pal

usage: lbm_rgb [switches] <src filename[.?bm]> [<dst filename[.rgb]>]

 <src filename>.?bm is a dpaint file

 <dst filename> is optional

switches: -b width and height written as big-endian

 -l width and height written as little-endian

 -p for psx output

 -q for quiet mode

 -s for saturn output

 -t makes colours of rgb values 0,0,0 transparent

 -1 for 1-bit pixel output

 -4 for 4-bit pixel output

 -8 for 8-bit pixel output

 -16 for 555 RGB pixel output

notes: only for 8 bitplanes @ mo.

 this tool needs a new name

 saturn stuff may be out-of-date

�Cockpit System

The method behind the displaying of a ship's cockpit is as follows:

cockpit render:

dustcamera render:

display starfield

gauges render:

power systems

display background / limiters

display engines' power

display guns' power

display shields' power

radar map

draw radar 'circle'

for all objects, if object not owner of radar, display as radar point

targetting

display 'circles' and 'crosshairs'

damage info.

display backgrounds / limiters

for all power systems, display system as normal / damaged / critical

guns

for all power systems, if gun, display

For information on how the cockpit is integrated with the 3d system display code, see flowcharts in the section 3d System -- Rendering Pipeline.

The Cockpit data format

This data format has been used in previous Wing Commander games to great effect. Although we will be updating certain game sub-systems, such as the issue of language and localization, we will still be able to use XMIFF for the cockpits in Wing Commander 5.

Risks / Issues.

One sub-system which is changed from previous Wing Commander games is that of the video output, and as such, the problem of drawing cockpit bitmaps is for the PC version is integrated with rasterization either within DirectDraw or on hardware-accelerated cards.

For the PSX version, we aim to be as economical as possible with VRAM and hence, we will extend the functionality of XMIFF to allow for line-drawn (or primitive-drawn) elements on the Head-Up-Display. This will save VRAM at the cost of a slight increase in the work done by the GPU.

Another sub-system change which will impact VRAM usage is that of the 3d Targetting Camera. Since the target ships will be displayed via the 3d system, using their 3d models, this will save VRAM, especially if these models are not textured.

Following is an example of an XMIFF file containing the description of a simple cockpit. For a description of the XMIFF utility and data format, see the file XMIFF.DOC.

FORM COCK

{

 // target shape packet file name

 CHUNK TARG

 {

 char[8] "blutarg"

 long PLAQUE_HAZE_TABLE

 }

 FORM SVGA

 {

 FORM HUD

 {

 CHUNK VPRT

 {

 long 0,0,639,479 	//size of visible viewport in this view

 }

 CHUNK RADI

 {

 long 12 		// inner radius (itts aligned)

 long 125 		// outer radius (missile lock enable)

 }

 CHUNK VDU

 {

 byte NO_DAMAGE 		// no damage in HUD view

 long 35,375 		// vdu 0 shape location

 long 35,375 		// vdu 0 data location

 long 120,100 		// width,height of display area

 }

 CHUNK SYS

 {

 // vdu 0 assignments

 byte SYSTEM_PLAYER_SHIELD

 byte DAMAGE_SHIELDS

 long 0 			// vdu assignment

 long 1 			// default display status

 }

 CHUNK WEAP

 {

 long 2 			// number of gun hardpoints

 long 21,20

 long 25,8

 long 2 			// number of missile hardpoints

 long 6,80

 long 14,73

 }

 CHUNK TARG

 {

 // HUD clipping region - use -1 to indicate entire screen

 // long 36,97 		// top left coordinate of HUD clipping region

 // long 581,479 	// bot rght coordinate of HUD cliiping region

 long -1,-1

 long -1,-1

 long S_TARGET_ICONS_SHAPE

 long S_TARGET_MISS_LOCK_SHAPE

 }

 } // end form SVGA

} // end form COCK

�

Finally, here is an example of the kind of cockpit view we will be able to generate in the game.

Communication System

Communications Overview

The comm system is the medium through which pilots send messages to other pilots.

All messages that coordinate ships not currently in formation, that the player can see as a direct or indirect receiver, or that the player sends personally, are routed through this class. Many do not require the playing of VDU movies, some do. Only those which involve the player necessarily do, though it is possible to have a listening device which allows the player to receive all comms, or selective comms, if the designers so choose to ask for one.

System Design:

When AI calls for a message to be sent to another ship, either as a part of a maneuver, part of a script mode command, or as a response to another comm inquiry, an event is generated and placed on the Group comm list. Each update, each ship will check his personal comm event list and will respond to the sender in an appropriate fashion. Sometimes this is will an action, other times with a comm back to the sender.

Wing leaders will be the communication heads in space--no wingmen will ever directly communicate with the wingmen or wing leaders of another group, although they can send messages to anyone within their own group. When inter-group communications occur, the message is addressed to only the wing leader. Any information needed by the wingmen from the comm sent to the wing leader will be sent through ancillary comms or through direct formation command directives by the wing leader.

Group-to-Group Example:

Aristotle Class Wing Leader: sends, “Gargoyle Fighter Squad Wing, escort us to the jump buoy.”

Gargoyle Fighter Squad Wing Leader: receives. Runs Escort program, which sends, “Rodger Aristotle, coming about.” Escort sets course to fly near and defend Aristotle, telling his wingmen to stay in formation and defend Aristotle.

However, inter-pilot communications are necessary for fun and hasseling during the game, so the player has the ability to address individuals within a wing, rather than solely the wing as a unit. This is normally only given as Taunt Target commands or as wingmen directives like Attack My Target or Defend Target, but the system is capable of allowing the player to address any object in space as an individual entity.

Implementation

The AI system contains a data structure called Groups. Each formation in space has one that describes all the members of the group, provides an iterator function, search capability, and other statistical and tracking functionality. Currently, there is no routing function implemented yet, as functionality is not fully determined. When design is complete for missions, a system will be inserted in the Groups class which takes a communication structure that declares the sender, receiver, content of the message, movie to display in case the player receives it, and audio file to play in case the player hears it. The routing function will immediately place the communication structure in the member’s data structure in a linked list, to be read and interpreted upon the next update.

From Groups.h:

class Groups

{

 public:

 Groups(void);

 void Reset(void); // resets the group #group_iterator to point to the leader again

 long NextMember(long *member_id); // returns true if there is a member still, false if 							// no member left

 long IsMember(long member_id); // searches group for member_id

 void AddMember(long member_id); // adds member_id to the group

 void DeleteMember(long member_id); // presumes that member exists in the group

 long NumMembers(void) { return num_members; }

// **** void RouteComm(commstruct c); // send comm to a ship in this group

 private:

 long members[MAX_MEMBERS]; 		// **** add a comm structure linked list per 						// **** member

 long num_members;

long nextnode;		// this is for the NextMember function. Delete and Reset 					// should reset this.

};

Artificial Intelligence System [AI]

AI Maneuvers

This system is currently in a state of design, so any information listed here is preliminary, and subject to change as research and development show fit. Primarily used as unscripted responses to exterior stimuli, maneuvers are a means for delivering a more human-like feel to ships while performing their duties as assigned by the designers. They relieve the burden of scripting combat to the actual capabilities of the craft, the pilots, and the odds against each.

Implementation Strategy:

When AI calls a maneuver, it is set up to replay a pre-recorded flight pattern. This flight pattern is in the form of a b-spline whose curve matches that of the 3-space positioning at each frame update for the ship. Also, a list of events that the ship triggers at various frames is kept. This facilitates remembering when a maneuver calls for afterburning, firing primary or secondary weapons, cutting power from engines, etc.

The method requires setting up initial circumstances of a target and player ship, recording the path chosen by the player at 60 frames per second, and storing the control data for each sampling point. Then, b-spline control points are generated to make a curve similar to the recorded curve, reducing the overall number of data points required to store the maneuver and reducing the projected point of each ship’s maneuver per frame to a mathematical projection without interpolation or error, regardless of the circumstances or dynamics involved for the ship itself.

Currently, a search for source code or implementation details (or even plausible theory) for inexpensive solutions to 3-d curve-fitting with control points for b-splines is underway. Until such workable code is found or written, the plan is to have an artist or designer manually fit control points to each curve so that it approximates the recorded flight path. It is the expectation that such will not be enthusiastically endorsed, and an automated solution is by far preferable.

struct maneuver

{

	event *e_data;		// an array of events, in order with a 							// frame number associated with each event

	controlpoint *cp_data;	// an array of control points, to generate

				// the b-spline for the object flight path

	initcirc icdata;	// initial setup of the maneuver recording

};

	The details of initcirc (initial circumstances) are not yet clear, but will be the information over which the evaluation function will determine the best match for maneuvers, and will select one of the appropriate skill level, relative vector, relative speed, and intention (defense, attack, flee, etc).

Maneuver Control

Each ship will be allowed a certain set of maneuvers it can carry out, defined upon loading the object data. This must be extensible, so that add-on disks with new maneuver data can be shipped without changing code. A side-effect of such design may allow a player to record and set up a unique maneuver and see it in the game without knowing anything about programming at all--practically everything required to make new maneuvers will be in the shipping version of the game.

Not all ships have access to all maneuvers, as not all rookie pilots know the most advanced moves, nor can they execute them effectively. For this reason, each ship maintains data on the maneuvers it can execute.

Some limited data accumulation may be taken over the course of the game which profiles the player’s abilities and reactions against all maneuvers. This profile will aid in setting pilot difficulties, especially in the case where one pilot should be amazingly difficult to defeat, we can simply select the maneuvers the player cannot defend against as readily as others.

General AI Scripting

It should be noted that the maneuver system is not related at all to the actual scripting of the missions. Any combat, conflict, or computer-controlled and non-scripted activity is a maneuver. Simple commands such as GotoRelative(object,x,y,z) is not considered a maneuver, as that command would be explicitly scripted by the designer. When a ship’s AI determines a threat, hazard, or any other necessary change in the explicitly specified programming, AI then supercedes scripting and takes control of the ship and all its functions (called AI mode). Upon completion of AI mode, the ship returns to script mode, and resumes programming where it left off.

� EMBED Visio.Drawing.4 ���

�From schedule.h:

// The way it works is pretty simple and generic.

// Now that the paradigm is to update at regular intervals, the

// scheduler expects to do one frame time worth

// of updates per call.

// --

// There are N buckets which are linked lists. There is exactly

// one bucket to a possible frame (so N=MAX_FPS_LIMIT) because we

// want to be able to place AI updates on exact timings, regardless of

// the frequency of the visible rendered frames.

//

// 1 2 3 4 5 6 7 8 9 (N=9)

// [_] [_] [_] [_] [_] [_] [_] [_] [_]-->back to the first bucket

// v v v v v v v

// v v v v

//

// Where each "v" is a node that points to the next node at that

// frame's time.

// The user will reset_iterator() once before iterating a timeslice.

// reset_iterator() will increment the frame once and start at the head

// of the list.

// Then, next() will return True and fill a pointer with the first node

// on the current list if its accesses=0

// or decrement accesses and move the current list forward until

// reaching the end of list.

//

#define AIFRAMES 128	// larger than the number of frames

// per second, but divisible by two (if possible)

// for easy mods

struct schednode

{

 void *object; 		// whatever it is defined to be, it is

 long accesses; 		// number of times to skip this before pulling it off 				 	// the list

 schednode *nextnode; 	// pointer to the next one

};

class AIScheduler

{

 public:

 AIScheduler(void);

 ~AIScheduler(void);

 static void insert(void *obj,long nframes); // insert a pointer 						// at (frames) timeslices into the future from the current 					// frame pointer

 static void insert(void *obj,float seconds); // insert a pointer 						// at (seconds*framepersec) timeslices into the future

 static void reset_iterator(void); // resets the 							// prev_to_current pointer to the first node on the 						// current_frame

 static long next(void **obj); // return next 							// pointer or return false

 private:

 static void addnodeto(long framenum,long acc,void *obj); // attaches 						// the void *obj to the frame list at framenum

 static schednode frames[AIFRAMES]; // these are the buckets 							// themselves

 static schednode *curlist; // this is the ACTUAL list being 						// iterated through, linked away from the frames[] lists

 static long current_frame; // this is the frame[] index 							// wherethe iterator currently points

};

AI System Overview

The AI system is called once per frame. Currently, this is 1/60th of a second at a fixed world model update rate, guarnateed regardless of the frame rate. Each ship that needs an update that frame will be removed from the AI scheduler and have its Process() function called. At the end of the Process() the return value is a time lapse to set from the current frame to the next update frame, based on the sort of work being articulate in the ship’s AI. This staggers the updates so that even with several hundred ships in space, few will be updating at any given frame.

From GlobalAI.h:

// this gets called once per frame, and spawns the

// process() call for each object that gets updated this frame by using // the scheduler

class GlobalAI

{

 public:

 GlobalAI(void);

 ~GlobalAI(void);

 static long FrameUpdate(void); // return is # ships 										// updated. Calls obj->process() for each object

 static void AddObject(void *obj); 	// inserts an object onto 	

// the AI Queue within a few frames of now, not

// exactly now

 private:

 static RRandom rnd;

 static AIScheduler *Que;

};

Process() Function

Processing the current AI mode happens here. Either

an event has happened to the ship, queried through Mission::test_events(),

the current AI command is completed and the next is requested through Mission::next_command()

the current AI command is not completed and is continued for yet another frame

or the ship is in AI mode and ignores its programming entirely, selecting maneuvers and attempting to kill or be killed with respect to its target list, defend list, and ignore list.

From AISystem.h:

class AISystem

{

// one of these is attached to each ship structure

 public:

 AISystem(void);

 ~AISystem(void);

 real Process(void *obj); 	// call this as soon as something is 								// pulled off the scheduler, returns time 							// in seconds

 private:

 real DoCmd(void); 		// return is time in seconds to push onto 							// the scheduler

 real DoAI(void); 	// return is time in seconds to push onto 							// the scheduler

};

VCR Playback System

Wing Commander V will have the ability to record and playback spaceflight missions. The fact that the game is being developed to have a constant model update rate significantly reduces the difficulty in implementing this system. Since we know what the model update rate is, we can guarantee that playback of VCR files will be identical on all machines, regardless of machine speed.

In order to record a mission, at the start of the mission the VCR system will begin by recording the initial random seed (or seeds), thus forcing our “random” numbers to be deterministic. Then, the system will start tracking the control structures of all objects in the world. These structures will be compressed so as to conserve memory. In order to playback the VCR file, just reload the mission, initialize the random seeds, and start inserting the appropriate recorded control structures into each of the spaceflight objects. The mission will replay precisely the way the user played it.

Example of a possible object control packet:

struct simpleControlPack

{

	float	yaw;		// fixed point?

	float	pitch;		// fixed point?

	float	roll;		// fixed point?

	float	throttle;	// fixed point?

	BOOL	afterburn	: 1;

	BOOL	fire_gun	: 1;

	BOOL	fire_missile	: 1;

	BOOL	drop_decoy	: 1;

};

Here are some of the many possible uses for the VCR playback system:

Programmers can get recorded VCR files from testers in order to pinpoint bugs and crashers

Player can review their mission with standard VCR controls, as well as switch the viewing perspective.

During the mission briefing, we could have highlights of the just flown mission playing in the background with a voice over.

We could use this option as a animated background filler behind option screens, or as examples of what needs to be done during the mission briefings or training sessions.

The credits could roll over some previously recorded space combat.

This would be an excellent for recording demos to show off out game engine for in-store and show floor demos.

The mechanics of the VCR system would aid in the implementation of a network system.

�GAMEFLOW

All data for Gameflow rooms will be created inside MED. The compiled data will be output as a ‘program’ which will be interpreted by the main MCP™ (Master Control Program). The ‘program’ is a list of commands and arguments that define the content and functionality of the room. The ‘program’ will create ‘objects’ that exist only within the room but will have access to all global game flags as well as its own local flags. Once the player leaves a room all objects are destroyed and that memory is freed up for the next room.

Each ‘object’ within the room will have properties assigned to it by the editor that will define its look and functionality. Default properties for each object type will coexist with user-defined properties. For example, all ‘Hot Spots’ will have x,y,w,h entries but may or may not have an ‘animation’ entry that would define an action that occurs when the cursor is placed over that hot spot.

The MCP™ will ‘step through’ the program data instruction by instruction only returning when all conditions have been met. Examples of conditions are ‘Talked to Maniac’ etc..

Once a program has been parsed and all relevant structs have been filled (See Structs below), control is passed back to the MCP™ until a recognized event takes place. The MCP™ will then scan for an active object (preferrably the one that the player’s cursor is on top of) and. once found. check whether that object has a need for an action to take place based on the current event.

// Structures for defining Gameflow room data…

typedef struct HRECT

{

	int		x;		// Screen XPOS

	int		y;		// Screen YPOS

	int		w;		// Width

	int		h;		// Height

	void *		animation;	// What happens when cursor is placed on hot rect?

	void *		action;		// What happens when cursor is clicked on hot rect?

	struct HRECT *	next;		// Pointer to next in list

} HRECT;

typedef struct PSTAMP

{

	void *		pixel_data;	// What (s)he looks like!!

	int		max_frame;	// Total number of animations (0 if static)

	int		frame_delay;	// Speed of animation

	int		current_frame;	// Which frame to display (if an animation)

	int		current_delay;	// Animation speed counter

	struct PSTAMP *next;		// Pointer to next in list

} PSTAMP;

typedef struct Room

{

	void *		bitmap;		// MDEC ?? Pre-decompressed to VRAM??

	PSTAMP *	sprite_list;	// Linked list of postage stamps

	HRECT *	hot_rects;		// Linked list of hot spots

} Room;

// List of possible instructions (to be parsed by the MCP™) All instructions will be

// represented

// by C style syntax in the actual ‘program’ source.

SET ACT

SET SCENE

SET MISSION

SET ROOM

SET GLOBAL FLAG

GET GLOBAL FLAG

SET LOCAL FLAG

GET LOCAL FLAG

GET SCENE number

ADJUST the value in a GLOBAL FLAG

ADJUST the value in a LOCAL FLAG

IF value is TRUE...

ELSE if value is FALSE...

GOTO THERE...

If TRUE, LOOP there...

PLAY a MOVIE

PLAY a movie BRANCH

CHOOSE a CONVERSATION BRANCH

PLAY a SOUND

STOP playing a SOUND

MUTE a SOUND

UNMUTE a SOUND

CHANGE the VOLUME of a sound

HIDE a GUMP from view

UNHIDE a GUMP

ADJUST MORALE of PILOT

Set PILOT to DEAD

Set PILOT to ALIVE and set morale

GET PILOT STATUS

Set PILOT to EXPENDABLE

Set PILOT to NOT EXPENDABLE

GET Is PILOT EXPENDABLE?

Set Pilot to Friendly

Set Pilot to Enemy

Set Pilot to sick

Set Pilot to awol

clear all awol flags on pilots

clear all sick flags on pilots

MAKE a SHIP AVAILABLE

MAKE a SHIP UNAVAILABLE

MAKE a WEAPON AVAILABLE

MAKE a WEAPON UNAVAILABLE

SET CURRENT SHIP

Turn movies "FADE to black" ON

Turn movies "FADE to black" OFF

Play a series of MOVIES BACK TO BACK

ADD KILLS to the PLAYER's recorded number of kills

SET the PLAYER's recorded number of kills

SET MOVIE TITLES for succeeding movie branches

END a list of MOVIE TITLES for succeeding movie branches

CLEAR all current MOVIE TITLES

CALIBRATE the JOYSTICK

�TRANSITION SYSTEM

Room ‘programs’ will have the ability to ‘jump’ to other programs or call ‘sub programs’ by passing control back to the MCP™ and giving it the name of the new program to run. The MCP™ will save the current IP (Instruction Pointer) of the calling program and run the new program as if it were a sub-routine. Once execution of the ‘sub program’ is completed the IP is reloaded from its saved position. This will enable player movement between rooms and menu systems/option screens. Care will be taken to avoid long periods of ‘blank’ screen that can detract from the player’s game immersion.

VIDEO PLAYBACK SYSTEMS

Existing movie player code will be used again for Wing 5. XAN™ for Win95 and the Wing4 player for PlayStation (with a few bug fixes (). See separate section.

GAME SAVE CONSOLE

Save/Load screens will be kept as simple as possible with little (or no) input required from the player. Operation should be quick in and out so as not to break up the player’s ‘game experience’. By displaying the Mission/Series information from each save game as a header no filenames will be necessary. (See Wing 3 3DO for an example)

USER OPTIONS CONSOLE

Here the player will be able to adjust key game elements to his liking. Options will be categorized and grouped accordingly. Operation of the menu system should be quick and intuitive to not detract from the player game immersion.

Audio Options

Global Volume - Set using a slider control and affects both sounds effects and music.

Background Music Volume - Set using a slider control and affects only the music. This value will be used as a percentage setting of the overall global volume.

Effects Volume - Set using a slider control and affects only the sound effects. This value will be used as a percentage setting of the overall global volume.

Movie Volume - Set using a slider control and affects the playback level of the movies. This value will be used as a percentage setting of the overall global volume.

Controls

Default Key Layouts - Allows the player to choose from a predefined set of keyboard layouts

Key Layout - Allows the player to reassign key settings.

Joystick Layout - Allows players to redefine which events are generated by joystick operations.

Default Joystick Layouts - Allows the player to choose from a predefined set of layouts.

Mouse Sensitivity - Allows the player to set the reaction level of the game to mouse input.

Gameplay

Skill Level - Allows the player to set the level of gameplay ranging from ‘Rookie’ to ‘Holy Shit’

Collisions - Allows the player to be unnaffected by collision with other objects.

Invulnerability - Allows the player to be immune to any enemy attack.

Unlimited Fuel - Allows the player’s ship to very fuel efficient!!

Unlimited Ammo - Allows the player to never run out of missiles etc.

SIMULATOR

Standard Wing Commander simulator where the player can ‘practice’ his dogfight skills without severe repercussions.

Predefined ‘Simulator Only’ missions with increasing difficulty level (while the player remains alive!) will provide an ‘arcade’ feel.

PlayStation version will include an option for ‘head-to-head’ play on simulator missions. 2 players could then play against each other via the PlayStation Combat Cable which links 2 PlayStations via an onboard port.

MEDAL AND KILL SCOREBOARDS

Standard Wing Commander style throughout. (Gotta make the player feel rewarded for his efforts!)

[Perhaps some interactivity between kill scores and players/computer attitude towards our hero? If Maniac leads the killboard he could become a little more annoyingly cocky than he already is?? Computer voice during debrief could remind player that “although he did very well, Mr Maniac is still leading!”]

DEBRIEF SYSTEM

Data structures will include global flags that are set by the mission programs. These may include: PLAYER_KILLS, WINGMAN_KILLS, MISSION_SUCCESS, etc. that the debrief system will have access to when printing out the mission statistics.

An example of how a mission would be flown and finished:

Launch. Instead of having a flick play to show fighters launching we will show the 3D Engine from a outside camera angle. View will be from outside the launch tube looking into it. We will script ship movement to fly through and out of tube & past camera. This will be extremely cool with dynamic lighting… maybe there is a spotlights or tubeway? (runway) lights that light ship as it comes out.

Mission. PLAYER FLIES MISSION

End of Mission- Player Confirms landing (automatically by default), engages the automatic landing sequence, then reads stats of his performance from a cockpit VDU (stats like weapon effectiveness, kills, friendlies killed, ship damage).

The game takes control of the player’s ship, and we cut to an outside camera on the landing bay. We script the ship flying into the bay and it lands. Once again we are in the 3D Engine and all the damage from battle, etc.. should be shown on the fighter. Stats would be kept in medal place (Ready Room locker) in player’s flight log (this could used to describe an Autosaved game)...

Movie - Player is then shown walking from landing bay with mechanic or other crew member saying “You might try flying your ship next time… or good job…”

[OPTIONAL] Debriefing. Movie- Player is in debriefing and he is told how he did in the mission…says “ way to take out that ace pilot, now we have a chance at getting to that enemy carrier.” for plot specific debriefings.

[OPTIONAL] Plot Specific Movies. Movie-player automatically runs any scenes that are critical to advancing the plot that take place outside of the main two room.

�[FLO] Program Interpretation (Design)

On the game side, there will be a Program class interpreting the FLO program scripts created and compiled with MED.

class Program

{

private :

	// All program code is aligned on dword boundaries

	dword* code_block;

	// Size of code_block in bytes

	dword size;

	// Pointer to current dword

	dword* ip;

	//

	// Sample Commands

	//

	// void setFlag (Flag f);

	// void activateObject (ObjectID o);

	// void attack (ObjectID o);

	// void wait (long seconds);

	// void goto (real x, real y, real z);

public :

	Program ();

	~Program ();

	// Loads a program

	void load (char* filename);

	// Returns the next dword, and increments the ip

	dword get_next_command ();

};

When the programs are “run,” or interpreted, the current design is to have the appropriate system (the MCP Scripting System, the Gameflow Scripting System, the Spaceflight Scripting System, and the AI) call the get_next_command () function. This function will parse the compiled code block, determine the course of action, increment the instruction pointer, and pass that instruction to the appropriate system. This will continue until the program has been completed, or halted by another program.

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �1� : In-game Program Parser

Master Control Program [Mission Interpreter]

The MCP (Master Control Program) is designed to be the game moderator. The MCP is a data script (program) that evaluates the global game flags to determine the state of the game, and decides the possible actions for the player, whether it be walking around a ship in gameflow, or flying a mission in spaceflight. As soon as the game has been started and initialized, control passes to the MCP.

The game does not have to alternate between gameflow and spaceflight. The MCP script can decide to play multiple missions in a row, or skip missions altogether – that is all up to the Series (MCP) script.

#include "program.h"

class CMcp

{

private :

	// Main Program that determines flow of game

	static Program master_program;

private :

	static void run_gameflow (char* filename);

	static void run_spaceflight (char* filename);

public :

	CMcp ();

	~CMcp ();

	static void initialize_system ();

	static void process_game_flags ();

	static void load_master_program (char* filename);

	static void run_master_program ();

};

As far as the MCP is concerned, initialize_system will be responsible for setting the initial state (gloabl flags). This can be the default state, or a resumed state (most likely from a save game file).

process_game_flags will be a call to run the master_program. Upon interpretation of the master_program script the MCP will decide to run a gameflow scene or a spaceflight mission. This process continues until the master_program has been completed, or the user exits the game.

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �2� : Master Control Program (MCP) Overview

Spaceflight System

Loading a Mission

Once the MCP decides that a spaceflight mission is to be run, the MCP sets up and loads a new program. This new program contains scripts to load objects required for the mission, as well as their mission programs. The engine is initialized, along with the AI scheduler.

The Spaceflight IOWin (Main Loop)

Once the mission starts, once per game loop, the AI scheduler will determine which objects to update that frame (see AI Scheduler). With this model, not every AI object has to be updated per frame. The objects are then set up to be updated with object::alter. Once all objects have been altered, the objects are updated with object::update and the world is rendered.

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �3� : Spaceflight IOWin (Main Loop)

Individual mission programs will set the appropriate Series (MCP, or GLOBAL) registers.

The end of the mission is signaled either through mission commands from an object’s program, or the end of the global mission script. Control is then passed back to the MCP.

�Libraries and Tools

Sound System

It is the current intention to use the IX Sound System, a multi-platform digital sound system internal to Origin. IX will serve as an abstraction layer to the target hardware or device manager (Playstation or Microsoft Direct Sound). The three major components of IX are the SoundSystem for processing digital sound effects, the Streamer for managing digital streamed music, and the Kernel which will serve as the pre-emptive task manager on the Playstation.

Capabilities:

Interactive digital music / data streaming subsystem.

A single stream file contains all data and music, allowing the program to load game data async / sync and continue to play the music at the same time.

The stream file may have only audio or only data, or both!

File data is maintained in the same hierarchy as the original data.

File data may also be compressed to reduce the stream footprint.

Multiple copies of game data can be placed throughout the stream file, reducing load time, or a single copy to reduce the stream footprint.

Interactive Digital music playback at 11kHz, 22kHz or 44kHz, 16-bit or 8-bit, stereo or mono.

Interactive music is controlled by triggers for specific game events, and a intensity level for the mood of the music.

Audio compression depending on the platform.

The tools used to build the stream file is available on SGI, Win95, and Mac.

Sound effects subsystem.

Dynamic voice allocation, based on volume, pitch, and priority which allows for a unlimited number of sounds attached to based upon priority to a limited number of voices.

Configurable number of voices, the maximum amount of voices is limited by processor power and/or hardware.

Real Time Dolby Encoding for each voice, allowing for a full 360(field of sound for those with the right hardware attached to their computer (Most of the newer sound cards all support SRS which will decode Dolby).

Digital sample rates supported are 4Khz to 44Khz, 8 or 16 bit, and mono or stereo.

Tools:

MKSTREAM (Make Stream) is a command line stream building tool for Win95 & SGI. The actual code is written in ANSI C, so it’s very portable to any other platforms.

PathMaker is a Windows application used for streaming digital audio (WAV) files from a hard drive or CD ROM source for the purpose of creating interactive music. This is accomplished by creating a network of pathways throughout each digital audio (WAV) file. Each pathway is defined by a pointer between a source and destination region of the file.

Maintenance:

IX began as a music and data streaming system for Wing Commander III 3DO. Its development then continued on the Prowler project for the Playstation. It is currently being used for Wing Commander IV Playstation, and served as the sound interface for Kilrathi Saga. Its product lifespan has been short, and we expect to find some bugs which will require attention.

AC3 support is an important strategic goal of the audio team. Research into AC3 encoding will be considered part of the maintenance and evolution of IX.

Integration and coexistence with the Movie Player and the emerging File I/O system will also be a maintenance issue.

API:

There is an extensive API for handling the Sound System, individual samples, the music streamer, and individual stream files. See the attached appendix for the complete sound API.

�Language Freedom

Wing Commander IV made tremendous progress in the area of localization. Language Freedom is the idea of language abstraction, which removes all language data to a set of files which can be easily modified and replaced to allow third-party localization. The executable and core data make no assumptions about which languages are available, so new ones can easily be supported.

The availability of languages is defined through a single data file. This file also defines the chunk names associated with each language. This is the key to language freedom.

FORM LANG

{

 CHUNK INFO

 {

 long 3 // number of languages in DATA chunk

 long 0 // default (native) language for install

 }

 // Name of data chunk corresponding to each language

 CHUNK DATA

 {

 cstring "ENGL" 	// Language 0, IFF chunk

 cstring "GERM" 	// Language 1, IFF chunk

 cstring "FREN" 	// Language 2, IFF chunk

 }

 FORM LANG

 {

 CHUNK ENGL

 {

 cstring "English" 	// Language 0

 cstring "German" 	// Language 1

 cstring "French" 	// Language 2

 }

 CHUNK GERM

 {

 cstring "Englisch" 	// Language 0

 cstring "Deutsch" 	// Language 1

 cstring "Franz”sisch" 	// Language 2

 }

 CHUNK FREN

 {

 cstring "English" 	// Language 0

 cstring "German" 	// Language 1

 cstring "French" 	// Language 2

 }

 }

}

Notice how the chunk names defined above (ENGL,FREN,GERM) are used in this IFF file which contains text strings :

FORM PAPA // Loudspeaker PA text strings

 {

 CHUNK ENGL

 {

 string("Loudspeaker: Report to Briefing for Communique")

 string("Loudspeaker: Report to Briefing for Communique")

 string("Loudspeaker: Report to Briefing for Emergency")

 string("Loudspeaker: Report to CIC for Emergency")

 string("Loudspeaker: Attention! This is a scramble.")

 }

 CHUNK GERM

 {

 string("Lautsprecher: Col. Blair zur Einsatzbesprechung! Nachricht vom Hauptquartier.")

 string("Lautsprecher: Col. Blair zur Einsatzbesprechung! Nachricht vom Hauptquartier.")

 string("Lautsprecher: Col. Blair sofort zur Einsatzbresprechung! Dies ist ein Notfall!")

 string("Lautsprecher: Notfall! Col. Blair melden Sie sich in der Kampfleitzentrale!")

 string("Lautsprecher: Die Lexington ist uns gefolgt! Alle Piloten starten!")

 }

 CHUNK FREN

 {

 string("Haut-parleur : Col. Blair, message de l'Etat-Major dans le salle de briefing !")

 string("Haut-parleur : Col. Blair, message de l'Etat-Major dans le salle de briefing !")

 string("Haut-parleur : Col. Blair, rendez-vous d'urgence dans la salle de briefing !")

 string("Haut-parleur : Col. Blair, vous ˆtes attendu d'urgence … la soute de contr“le !")

 string("Haut-parleur : Alerte g‚n‚rale ! Le Lexington nous a suivi. Tous sur le pont !")

 }

 }

The data structure and API (as it currently exists) for managing languages :

//---

// CLASS LanguageFreedom

//---

class LanguageFreedom

{

 public:

 // Data

 long total_lang; // number of languages defined

 long native_lang; // default language specified in globals

 long active_lang; // active language can be changed by install

 // Functions ...

 LanguageFreedom(void);

 ~LanguageFreedom(void);

 void init(void);

 // read languages from globals and set chunk names

 void load(IFF &iff);

 char *get_chunk(long requested) { return(namechunk[requested]); }

 char *get_language(long requested) { return(langname[requested]); }

 void set_active(long active) { active_lang = active; }

 void open_active_form(IffReader &iff);

 void open_active_chunk(IffReader &iff);

 protected:

 // Hidden Data ...

 char **namechunk; // allot space for chunk names ("ENGL","GERM"...)

 char **langname; // allot space for language names ("English","German"...)

};

Maintenance:

The data structures and API require further enhancement for total language abstraction. This will be standardized for all Maverick products. Research into Asian language support will be considered part of this upgrade.

A translator tool will be written to provide an interface to the language IFF files. This utility will maintain modification statistics. It can then be easily determined when strings are out of date (ex. an English string was modified, but the French and German were not). The translators will be able to generate reports flagging files which might require attention.

�Movie Player

Wing Commander V will be using the XAN movie player developed in-house for Wing Commander IV. The Windows 95 version had several notable improvements over its DOS predecessor. The XAN movie player is currently in a .DLL format, for use by Windows 95 applications.

Features :

Has already been ported to Windows 95 for Wing Commander IV for Windows 95

Supports DirectDraw modes 640x480x24, 640x480x16, 640x480x8

Supports DirectSound

Runs full-screen or full-screen small window

Runs full-screen or in a desktop window

Runs interlaced or non-interlaced

Supports options for black and white and fast decompression

Supports 16 bit sound

API :

The API of the XAN movie player :

#ifndef XDMOVIE_H

#define XDMOVIE_H

//--//

// //

// XDMOVIE.H //

// //

// COPYRIGHT (C) 1996 BY ORIGIN SYSTEMS, INC. //

// //

//--//

//------------------------------- #INCLUDES --------------------------------//

#if 0

	The XDMOVIE class handles the streaming of a AVI / WAVE files.

	It's main function is the timing of video frames with the audio track.

	XDMOVE does this by reading sound and video data from the stream, placing

	the sound data in a DirectSound buffer, and calling the drawFrame()

	function at the appropriate time.

	You can also use the movie player with the Multimedia Sound system instead of

	DirectSound. See the init() function below for details.

	Note: XDMOVIE does not deal with the decompression/drawing of the video frame,

	other than to call the drawFrame() function. The default drawFrame() method

	does nothing at all. You must inherit a subclass from XDMOVIE which overrides

	drawFrame(). Your drawFrame() should perform both decompression and the

	drawing of video data.

	//------------------------------

	//

	BOOL drawFrame (DWORD dwFlags);

		INPUT:

			dwFlags:

				XDMOVIEF_HURRY_UP: the video is lagging behind the audio

					track. The procedure should perform minimal

					decompression of the video data to save time. You

					should also skip the draw of this video frame.

		OUTPUT:

			Decompresses the current video stream data, and draws the frame.

		RETURNS:

			TRUE: Continue playing the movie.

			FALSE: 	Stop playing the movie right now.

	The XDMovie reads several frames ahead of the current frame to be drawn. For this

	reason, you should not use 'current_frame' or 'current_shot' members of the streamer.

	Instead, use the XDMovie members:

	When drawFrame() method is called, the following XDMOVIE members are valid:

	long			dwFramesLeftToRead;

		// dwFramesLeftToRead:

		// Number of frames of video data left to be read from the file.

		// Because the streamer is reading ahead of the current frame being drawn,

		// this number might be lower than 'dwFramesLeftToPlay'.

	long			dwFramesLeftToPlay;

		// dwFramesLeftToPlay:

		// Number of frames of video left to be decompressed and drawn to the screen.

		// This number is decremented AFTER the user procedure returns.

	long			dwFramesPlayed;

		// dwFramesPlayed:

		// Number of frames of video that have been decompressed/displayed.

		// This number is incremented AFTER the user procedure returns.

	//------------------------------

	//

	byte getPaletteIndex (void);

		RETURNS:

			Index of current palette being used (Zero based). This info is only

			useful if you are drawing in 8 bit mode. Use this index when getting

			the lookup and palette pointers from the streamer.

	//------------------------------

	//

	void * getFrameData (void);

		RETURNS:

			Pointer to the current compressed video frame data.

	//------------------------------

	//

	long getFrameNumber (void);

		RETURNS:

			Current frame number being decompressed/drawn.

	The following functions are only valid when the movie is being played:

	//------------------------------

	//

	void * getDSBuffer (void);

		RETURNS:

			Pointer to the DirectSoundBuffer being used.

			NOTE: This may return NULL if sound is not being used, or if the

				movie does not contain a sound track. If you are using the

				Multimedia Sound System instead of DirectSound, some of the

				DirectSoundBuffer methods will return DSERR_GENERIC. (Not

				all of the DirectSound functions translate well to the other

				sound system.)

	//------------------------------

	//

	void resetFrameTiming (void);

		OUTPUT:

			Stops the sound playback and freezes timing variables. When the user

			procedure returns control to XDMOVIE, playback of the movie will

			automatically resume if the user procedure returns TRUE.

	//---//

	//---//

	Other XDMOVIE methods:

	//------------------------------

	//

	long getLastError (void);

		RETURNS:

			Error code result of last XDMOVIE method.

		NOTES:

			XDMOVIE methods that return a BOOL type for success/failure of the

			operation also store an error code result. If a XDMOVIE method

			fails, call this method to get the error code.

			XDMOVIEERR_NOERR: Successfull operation, no errors.

			XDMOVIEERR_NOLIB: Could not load a required DLL file.

			XDMOVIEERR_INVALIDPARMS: Invalid input parameters.

			XDMOVIEERR_NOTIMER: No high performance timer available.

			XDMOVIEERR_NOMEMORY: A memory allocation failed.

			XDMOVIEERR_DSFAILED: Failed creation of a DirectSound (secondary)

				buffer.

			XDMOVIEERR_UNKNOWN: Playback failed for unknown reasons.

			XDMOVIEERR_SNDFORMAT: Sound format not supported.

			XDMOVIEERR_MMFAILED: Could not create Multimedia wave out stream.

				(sound already in use)

	//------------------------------

	//

	BOOL init (void *lpDirectSound, void *lpDSPrimaryBuffer,

				__STREAMHANDLER *streamer, DWORD dwDSFlags);

		INPUT:

			lpDirectSound: Pointer to a DirectSound object. May be NULL for no

				sound, or may be 	XDMOVIE_MMSOUND to use the Multimedia

				Sound System. lpDSPrimaryBuffer: Pointer to the DirectSound

				primary buffer. Must be valid pointer

				if 'lpDirectSound' points to a directSound object.

				If 'lpDirectSound' == XDMOVIE_MMSOUND, this parameter should

					also be set to XDMOVIE_MMSOUND.

			streamer: Pointer to a file streamer defined in the XanLib library.

			dwDSFlags: Flags to pass DirectSound when creating the sound 				buffer. By default, the buffer is created without VOLUME or 				PANNING controls.

		RETURNS:

			TRUE if successful.

			FALSE if init failed. Call getLastError() to get the error code.

		NOTES:

			Setting 'lpDirectSound' and 'lpDSPrimaryBuffer' to XDMOVIE_MMSOUND

				tells the movie player to use the Multimedia sound system

				instead of directSound.

	//------------------------------

	//

	void reset (void);

		OUTPUT:	

			Restores the instance to its state at construction. All resources

			are freed.

	//------------------------------

	//

	BOOL play (long dwNumFrames);

		INPUT:

			dwNumFrames: Number of frames of video/audio data to read from the

				stream and play. Passing MAX_INT will cause it to play to

				the end of the stream.

		RETURNS:

			TRUE: dwNumFrames were played.

			FALSE: Either an error occurred (see getLastError()),

				or the user callback function returned FALSE.

		REMARKS:

			The movie begins playing at the current frame position of the

			streamer. To start playback in the middle of the stream, seek to 				the starting frame before calling play(). If you want to play two 				non-consecutive segments of a movie without stopping playback, do 				the following in your drawFrame() function: When dwFramesLeftToRead 			becomes 0, seek the streamer to the first frame of the next 				segment. Remember to set the dwFramesLeftToRead to the length (in 				frames) of the new segment.

#endif

//---//

//---//

#ifdef XAN_LIBRARY

#define XDMOVIECALL __declspec(dllexport)

#else

#define XDMOVIECALL __declspec(dllimport)

#endif

#define XDMOVIE_BUFFERS 8

#define XDMOVIE_MMSOUND ((void *)1)

#pragma pack (push, 4)			

// start dword alignment

class __STREAMHANDLER;

class XDMOVIE;

//--------------------------------------

//-- flags for Movie callback procedure

//--------------------------------------

#define XDMOVIEF_HURRY_UP		0x00000001

//--------------------------------------

//-- Error codes returned by getLastError()

//--------------------------------------

#define XDMOVIEERR_NOERR		0x00000000

#define XDMOVIEERR_NOLIB		0x00000001

#define XDMOVIEERR_INVALIDPARMS	0x00000002

#define XDMOVIEERR_NOTIMER		0x00000003

#define XDMOVIEERR_NOMEMORY	0x00000004

#define XDMOVIEERR_DSFAILED	0x00000005

#define XDMOVIEERR_UNKNOWN		0x00000006

#define XDMOVIEERR_SNDFORMAT	0x00000007

#define XDMOVIEERR_MMFAILED	0x00000008

//--------------------------------------

//-- end of error codes

//--------------------------------------

class XDMOVIE

{

public:

	long			dwFramesLeftToRead;

	long			dwFramesLeftToPlay;

	long			dwFramesPlayed;

	__STREAMHANDLER	*streamer;

private:

	void 			*pcm_decoder;		// sound decompressor

	void			*lpDSBuffer;		// Direct Sound secondary buffer

	void 			*lpDecompBuffer;	// result of sound decompression

	long			AUDIO_READ_BUFFER_SIZE;

	byte			ShotChangeList[XDMOVIE_BUFFERS];

	void			* VideoFrameBuffer[XDMOVIE_BUFFERS];

	long			FrameNumberBuffer[XDMOVIE_BUFFERS];

	int			VFReadHead;

	int			VFWriteHead;

	// sound members

	BOOL			SoundPlaying;

	long			SoundAddedToBuffer;

	long			SoundReadSize;

	long			SoundInBuffer;

	DWORD			dwSoundWriteHead;

	DWORD			dwSoundBytesPerFrame;

	// timing booleans

	BOOL			drop_next_frame;

	__int64			liTicksPerFrame;

	__int64			liLastClockCount;

	DWORD			timer_started;

	void			*lpSilence;			

	DWORD			dwMovieFlags;

	long			dwReserved[6];			// future expansion

protected:

XDMOVIECALL	static long	last_error;

	

private:

	// private methods

	void initializePlaybackGlobals (void);

	int videoFramesFilled (void);

	BOOL handleCallback (void);

	__int64 getTick (void);

	BOOL addSoundData (void * lpSoundData, long data_size, DWORD dwFlags);

	void AddSilenceToSound (void);

protected:

	//-----------------

	// you should override this drawFrame() method...

	//-----------------

XDMOVIECALL virtual BOOL drawFrame (DWORD dwFlags);

public:

	//-----------------

	// public methods

	//-----------------

XDMOVIECALL XDMOVIE (void);

XDMOVIECALL void * operator new (size_t size);

XDMOVIECALL void operator delete (void *ptr);

XDMOVIECALL	virtual ~XDMOVIE (void);

XDMOVIECALL	virtual BOOL init (void *lpDirectSound, void *lpDSPrimaryBuffer,

				__STREAMHANDLER *streamer, DWORD dwDSFlags);

XDMOVIECALL	virtual void reset (void);

XDMOVIECALL	virtual BOOL play (long dwNumFrames);

XDMOVIECALL	virtual void resetFrameTiming (void);

	long getLastError (void)

	{

	 	return last_error;

	}

	void * getDSBuffer (void)

	{

	 	return lpDSBuffer;

	}

	byte getPaletteIndex (void)

	{

		return ShotChangeList[VFReadHead];

	}

	void * getFrameData (void)

	{

		return VideoFrameBuffer[VFReadHead];

	}

	long getFrameNumber (void)

	{

		return FrameNumberBuffer[VFReadHead];

	}

};

#pragma pack (pop)			

// end dword alignment

#endif

Available Tools

Floss : Floss allows the editing of XAN compressed movies. For Windows 95.

Happy : Happy allows the editing of subtitles for XAN compressed movies. Features include multi-language support and on-the-fly subtitle timing. For Windows 95.

Phappy (Print Happy) : Phappy converts the .IFF files created by Happy to text files for proof reading/editing. For Windows 95.

Xan : Xan performs the compression of video data to create a XAN .AVI file.

Weave : Weave add audio data (a sound track) to a Xan .AVI file.

�

Object Editor

A completely new object editor will be required for Wing Commander 5. The editor will possess the following base functionality :

import Alias OBJ format files

assign distances for detail level switching

assign collision extents

place sound textures (source of sound and acoustic parameters)

define object properties used by the game (armor, shields, weapon hardpoints, etc)

test collisions, explosions, etc. (preferably with the 3D engine used by the game)

MultiGen Research

It is currently a high priority to research the possibility of using the MultiGen system as an object editor solution. We know MultiGen will read Alias files, has a sound texture module, and an object behavior module. A decision should be made by the end of October as to whether MultiGen will satisfy our needs. The alternative will be to resume our plans for an inhouse solution.

Current ACE Design

There is an existing ACE design which incorporates much of the desired functionality. This project is the back-up plan if MultiGen does not work out. The application is designed for Windows 95 using MFC.

//--

// ObjEditDoc

//--

class ObjEditDoc : public CDocument

{

protected: // create from serialization only

	ObjEditDoc();

	DECLARE_DYNCREATE(ObjEditDoc)

// Attributes

public:

	char name[32];	// just an ID for now... where is full file name?

	Vector touch_pos;

	int o_info[4];	// temporary object (count, num_selected, num_hidden, 0)

	int v_info[4];	// temporary vertex

	int p_info[4];	// temporary polygon

// EDITOR DATA

	EditModeInfo mode;

	EditorMode get_mode (void)

	{

		return mode.type;

	}

	int display_filter;

	int display_vertices (void)

	{

		return (display_filter & FILTER_VERTEX);

	}

	int display_wireframe (void)

	{

		return (display_filter & FILTER_WIREFRAME);

	}

	int display_polygons (void)

	{

		return (display_filter & FILTER_POLYGON);

	}

	int display_labels (void)

	{

		return (display_filter & FILTER_LABEL);

	}

	int display_normals (void)

	{

		return (display_filter & FILTER_NORMAL);

	}

	int display_backcull (void)

	{

		return (display_filter & FILTER_BACKCULL);

	}

// MESH DATA

	ListNode<EditorObject> object_list;

	EditorObject *active_object;	// current object for work

	ObjMesh *active_mesh;			// current object's mesh for work

	ObjMesh *pick_mesh (void);

	EditorObject *select_object (void);

	EditorObject *new_object (const char *name)

	{

		EditorObject *obj = new EditorObject;

		ASSERT(obj);

		obj->name = name;

		object_list.add_to_tail(obj);

		return (obj);

	}

	void free (void)

	{

		object_list.free_list();

	}

// UNDO FUNCTIONS

	UndoLog history;

	void begin_cmd (void)

	{

		history.begin();

	}

	void do_cmd (UndoCmd &cmd)

	{

		history.record(cmd,this);

	}

	void end_cmd (void)

	{

		history.end();

	}

	void change (void *old_ptr, void *new_ptr)

	{

		history.change(old_ptr,new_ptr);

	}

// FUNCTIONS

	void set_status (int index, char *msg);

	void update_status_bar (void);

	void update (void)

	{

		update_status_bar();

		UpdateAllViews(NULL);

	}

	void set_mode (EditorMode new_mode=MODE_Default);

// VERTEX FUNCTIONS

protected:

public:

	void save_mesh (void);

	void restore_mesh (void);

	ObjPoint *new_vertex (void); // INTERNAL

	ObjMesh *find_vertex (ObjPoint *p)

	{

		ObjMeshPos mesh(&object_list);

		for (mesh.init(); mesh.traverse();)

		{

			if (mesh->find_vertex(p))

				break;

		}

		return (mesh);

	}

	void delete_vertex (ObjPoint *v)

	{

		ObjMesh *m = find_vertex(v);

		if (m)

		{

			m->delete_vertex(v);

			SetModifiedFlag(); // data has been changed!

		}

	}

	ObjPoint *find_vertex (const Vector & pos, real radius=0)

	{

		ASSERT(active_mesh);

		return active_mesh->find_vertex(pos,radius);

	}

	ObjPoint *create_vertex (const Vector &pos);

	bool delete_vertex (const Vector & pos)

	{

		ObjPoint *p = find_vertex(pos);

		if (p)

		{

			delete_vertex(p);

		}

		return (p != NULL);

	}

// POLYGON FUNCTIONS

protected:

public:

	ObjPolygon *new_polygon (void);

	ObjMesh *find_polygon (ObjPolygon *p)

	{

		ObjMeshPos mesh(&object_list);

		for (mesh.init(); mesh.traverse();)

		{

			if (mesh->find_polygon(p))

				break;

		}

		return (mesh);

	}

	void delete_polygon (ObjPolygon *p)

	{

		ObjMesh *m = find_polygon(p);

		if (m)

		{

			m->delete_polygon(p);

			SetModifiedFlag(); // data has been changed!

		}

	}

	ObjPolygon *find_polygon (const Vector & pos, real radius=0)

	{

		ASSERT(active_mesh);

		return active_mesh->find_polygon(pos,radius);

	}

	ObjPolygon *create_polygon (int vi_count, const int16 *vi_list, ObjPoint **v_list);

	bool delete_polygon (const Vector & pos)

	{

		ObjPolygon *p = find_polygon(pos);

		if (p)

		{

			delete_polygon(p);

		}

		return (p != NULL);

	}

	void transform_vertices (class ObjEditView *view, Vector *out);

	void cmd (int cmd, int filter, int find=MESH_NONE, int skip=MESH_HIDDEN);

	void area_cmd (ObjEditView *view, VectorBox &box, int cmd, int filter);

	int set_connected (EditType *i, dword on, dword off);

	CFrameWnd *new_view (ViewType view_type);

	class MainFrame *GetMainFrame (void)

	{

		return (class MainFrame *)theApp.m_pMainWnd;

	}

public:

	bool any_selected (void);

	void select_all (int filter=FILTER_VERTEX|FILTER_POLYGON);

	void deselect_all (int filter=FILTER_VERTEX|FILTER_POLYGON);

	void toggle (EditType *p, dword flags);

	void delete_selected (int filter=MESH_VERTEX|MESH_POLYGON);

	real get_selected_sphere (Vector ¢er) const;

	void spin (const Vector ¢er, const Vector &axis, real angle);

	void move (const Vector &delta);

	EditType *find (ObjEditView *view, Vector &p, int filter);

// Operations

public:

// Overrides

	// ClassWizard generated virtual function overrides

	//{{AFX_VIRTUAL(ObjEditDoc)

	public:

	virtual BOOL OnNewDocument();

	virtual void Serialize(CArchive& ar);

	virtual BOOL OnSaveDocument(LPCTSTR lpszPathName);

	virtual BOOL OnOpenDocument(LPCTSTR lpszPathName);

	protected:

	virtual BOOL SaveModified();

	//}}AFX_VIRTUAL

// Implementation

public:

	virtual ~ObjEditDoc();

#ifdef _DEBUG

	virtual void AssertValid() const;

	virtual void Dump(CDumpContext& dc) const;

#endif

protected:

};

Mission Editor

Goals:

VISUAL tool built for designers

Consists of Mission and Gameflow editor

Simplified Flag programming (FLO scripting language)

Ability to create templates (arrange heavenly objects)

Ability to place objects, assign objectives (script programming)

Ability to manipulate hotspots and backgrounds

Ability to layout series flow

Overview:

MED was designed and written to be a game-independent editor. Prior to use in any game, MED should be configured to know how to write out its data files. Configuration of MED is left up to the programmers who will create property lists (data structures) for each of the components that make up an object. Ideally, MED can be used to manipulate the data structures for any types of objects in any genre of game.

MED will give designers a tool from which they will be able to plan, create, map, and edit the any type of data for Wing Commander V. It will also serve as a standard to be used by designers over the span of future games, with full customization options. The intention is for designers to spend less time worried about the syntax of the mission data files and more time ensuring the quality of the mission.

MED is approximately 60% complete. Since we are finally developing native Windows 95 applications, several of the editor strengths can be attributed to the user interface, and the ability to task-switch between the game and the editor.

MED currently will be able to create 4 unique types of files, the Series, the Missions, Rooms, and Sectors. A Series is composed of Missions. Missions are composed of Rooms and Sectors.

� EMBED Visio.Drawing.4 ���

Figure � SEQ Figure * ARABIC �4� : MED Overview

Property Lists

Property Lists are the heart of MED. Property lists are essentially data containers, or structs. MED can be configured to associate any property list (data structure) with any object in the editor.

“Programs”

Programs are scripts (or instructions) of tasks using the FLO scripting language to be carried out in a particular order. A program can be assigned to any system, object, or event in the game. Ideally, programs should be able to spawn other programs.

Sample uses of programs include :

Game scripting - controlling what gameflow scenes and spaceflight missions to run

Gameflow scripting - controlling mouse hotspots

Mission scripting - controlling AI objects

Event scripting - sub-programs that execute based on environmental needs (hotspot clicked, enemy hit, etc.)

FLO (Flexible Opcode) Scripting Language

A new data-driven scripting language has been created to simplify program script creation [see “Programs” below]. The scripting language allows the creation of variables, manipulation of variables (through assignment), function calls, conditional statements, comments, and branching. With this system, the designers will be able to create scripts nearing the C/C++ syntax, rather than the assembly language syntax of the previous scripting system.

The scripts are compiled using MED. As a development tool, an external compiler (WCC) will also be available.

THE PAST

Old style MIF files (Strike Commander, Wing 3, Wing 4) were cumbersome and difficult to read.

	CHUNK VARS

	{

		#define FLAG_test %INDEX

		dw 0	; initial value

	}

	CHUNK PROG

	{

		#define PROG_go %OFFSET

		dw CMD_move_value_to_it,17

		dw CMD_move_it_to_flag, FLAG_test

		dw CMD_end

	}

Though it was a crude and tedious way to program missions, it was flexible and got the job done.

THE PRESENT

The goal of the “new” mission programming paradigm is still to provide a highly flexible system so that the creativity of the designers is not limited, but to try and offer a significantly nicer interface at the cost of a reasonable amount of programming effort.

One focus of this effort is to try and make any programming a designer needs to do… as close to using the “C” language as is appropriate.

It is worth noting that actually using “C” via a DLL (dynamic link library) system might ultimately be ideal… but since DLL’s are not a part of the standard-C language, they present a significant hurdle to the multi-platform strategy. A custom DLL system could probably be written for any platform, the problems become getting the code to work with the debugger and not soaking up too much memory for symbol tables etc.

There is a lot of complexity to “C” that is unnecessary and dangerous to expose inexperienced programmers to.

Scripting Language Specification

Please see the attached appendix for a detailed description of the mission scripting language.

�Appendix A - Sound System API

Table of Contents

� TOC \o "1-3" �Sound API	� GOTOBUTTON _Toc370024721 � PAGEREF _Toc370024721 �72��

Files	� GOTOBUTTON _Toc370024722 � PAGEREF _Toc370024722 �72��

Dynamic Voice Allocation	� GOTOBUTTON _Toc370024723 � PAGEREF _Toc370024723 �73��

Supported Sound Formats	� GOTOBUTTON _Toc370024724 � PAGEREF _Toc370024724 �73��

Looping Sounds	� GOTOBUTTON _Toc370024725 � PAGEREF _Toc370024725 �73��

SoundSystem::	� GOTOBUTTON _Toc370024726 � PAGEREF _Toc370024726 �73��

static int32 install(void);	� GOTOBUTTON _Toc370024727 � PAGEREF _Toc370024727 �73��

static void release(void);	� GOTOBUTTON _Toc370024728 � PAGEREF _Toc370024728 �73��

static void declare(dword option, dword argument);	� GOTOBUTTON _Toc370024729 � PAGEREF _Toc370024729 �73��

static uint16 get_master_volume(void);	� GOTOBUTTON _Toc370024730 � PAGEREF _Toc370024730 �74��

static void set_master_volume(uint16 volume);	� GOTOBUTTON _Toc370024731 � PAGEREF _Toc370024731 �74��

static Sample *create_sample(void);	� GOTOBUTTON _Toc370024732 � PAGEREF _Toc370024732 �74��

static void free_sample(Sample *sample);	� GOTOBUTTON _Toc370024733 � PAGEREF _Toc370024733 �74��

static void free_all_samples(void);	� GOTOBUTTON _Toc370024734 � PAGEREF _Toc370024734 �75��

static Sound *create_sound(Sample *sample);	� GOTOBUTTON _Toc370024735 � PAGEREF _Toc370024735 �75��

static void free_sound(Sound *sound);	� GOTOBUTTON _Toc370024736 � PAGEREF _Toc370024736 �75��

static void free_all_sounds(void);	� GOTOBUTTON _Toc370024737 � PAGEREF _Toc370024737 �75��

Sound::	� GOTOBUTTON _Toc370024738 � PAGEREF _Toc370024738 �75��

void set_volume(uint16 volume);	� GOTOBUTTON _Toc370024739 � PAGEREF _Toc370024739 �75��

uint16 get_volume(void);	� GOTOBUTTON _Toc370024740 � PAGEREF _Toc370024740 �76��

void set_pan(uint16 pan);	� GOTOBUTTON _Toc370024741 � PAGEREF _Toc370024741 �76��

uint16 get_pan(void);	� GOTOBUTTON _Toc370024742 � PAGEREF _Toc370024742 �76��

void set_pitch(int32 pitch);	� GOTOBUTTON _Toc370024743 � PAGEREF _Toc370024743 �76��

int32 get_pitch(void);	� GOTOBUTTON _Toc370024744 � PAGEREF _Toc370024744 �76��

void set_pri(uint8 pri);	� GOTOBUTTON _Toc370024745 � PAGEREF _Toc370024745 �76��

uint8 get_pri(void);	� GOTOBUTTON _Toc370024746 � PAGEREF _Toc370024746 �77��

void set_autofree(int32 auto_free);	� GOTOBUTTON _Toc370024747 � PAGEREF _Toc370024747 �77��

int32 playing(void);	� GOTOBUTTON _Toc370024748 � PAGEREF _Toc370024748 �77��

void start(void);	� GOTOBUTTON _Toc370024749 � PAGEREF _Toc370024749 �77��

void release(void);	� GOTOBUTTON _Toc370024750 � PAGEREF _Toc370024750 �77��

void stop(void);	� GOTOBUTTON _Toc370024751 � PAGEREF _Toc370024751 �78��

Sample *get_sample(void);	� GOTOBUTTON _Toc370024752 � PAGEREF _Toc370024752 �78��

Sample::	� GOTOBUTTON _Toc370024753 � PAGEREF _Toc370024753 �78��

void parse_vag(byte *vag,int32 bytes);	� GOTOBUTTON _Toc370024754 � PAGEREF _Toc370024754 �78��

void parse_aiff(byte *aiff,int32 bytes);	� GOTOBUTTON _Toc370024755 � PAGEREF _Toc370024755 �78��

void parse_wav(byte *wav,int32 bytes);	� GOTOBUTTON _Toc370024756 � PAGEREF _Toc370024756 �78��

void parse_raw(byte *raw,int32 bytes,int32 freq,int32 bits,int32 channels);	� GOTOBUTTON _Toc370024757 � PAGEREF _Toc370024757 �79��

dword samples(void);	� GOTOBUTTON _Toc370024758 � PAGEREF _Toc370024758 �79��

int32 frequency(void);	� GOTOBUTTON _Toc370024759 � PAGEREF _Toc370024759 �79��

bool looping (void);	� GOTOBUTTON _Toc370024760 � PAGEREF _Toc370024760 �79��

void loop(bool on);	� GOTOBUTTON _Toc370024761 � PAGEREF _Toc370024761 �80��

dword get_loop_start (void);	� GOTOBUTTON _Toc370024762 � PAGEREF _Toc370024762 �80��

void set_loop_start (dword start);	� GOTOBUTTON _Toc370024763 � PAGEREF _Toc370024763 �80��

dword get_loop_end(void);	� GOTOBUTTON _Toc370024764 � PAGEREF _Toc370024764 �80��

void set_loop_end (dword end);	� GOTOBUTTON _Toc370024765 � PAGEREF _Toc370024765 �80��

Streamer API	� GOTOBUTTON _Toc370024766 � PAGEREF _Toc370024766 �81��

Designing your program to use Streamer	� GOTOBUTTON _Toc370024767 � PAGEREF _Toc370024767 �81��

Files	� GOTOBUTTON _Toc370024768 � PAGEREF _Toc370024768 �81��

Stream File Format	� GOTOBUTTON _Toc370024769 � PAGEREF _Toc370024769 �82��

Streamer::	� GOTOBUTTON _Toc370024770 � PAGEREF _Toc370024770 �82��

static int32 install(void);	� GOTOBUTTON _Toc370024771 � PAGEREF _Toc370024771 �83��

static void release(void);	� GOTOBUTTON _Toc370024772 � PAGEREF _Toc370024772 �83��

static void declare(dword option,dword argument);	� GOTOBUTTON _Toc370024773 � PAGEREF _Toc370024773 �83��

static void set_dev_mode(int32 on);	� GOTOBUTTON _Toc370024774 � PAGEREF _Toc370024774 �83��

static int32 open(char *fname);	� GOTOBUTTON _Toc370024775 � PAGEREF _Toc370024775 �84��

static void close(void);	� GOTOBUTTON _Toc370024776 � PAGEREF _Toc370024776 �84��

static void play(void);	� GOTOBUTTON _Toc370024777 � PAGEREF _Toc370024777 �84��

static void stop(void);	� GOTOBUTTON _Toc370024778 � PAGEREF _Toc370024778 �84��

static void pause(void);	� GOTOBUTTON _Toc370024779 � PAGEREF _Toc370024779 �84��

static void clear(void);	� GOTOBUTTON _Toc370024780 � PAGEREF _Toc370024780 �84��

static void set_intensity(uint8 intensity);	� GOTOBUTTON _Toc370024781 � PAGEREF _Toc370024781 �85��

static uint8 get_intensity(void);	� GOTOBUTTON _Toc370024782 � PAGEREF _Toc370024782 �85��

static void set_trigger(int8 trigger);	� GOTOBUTTON _Toc370024783 � PAGEREF _Toc370024783 �85��

static int8 get_trigger(void);	� GOTOBUTTON _Toc370024784 � PAGEREF _Toc370024784 �85��

static void force_trigger(int8 trigger);	� GOTOBUTTON _Toc370024785 � PAGEREF _Toc370024785 �85��

static void set_volume(uint16 volume);	� GOTOBUTTON _Toc370024786 � PAGEREF _Toc370024786 �85��

static uint16 get_volume(void);	� GOTOBUTTON _Toc370024787 � PAGEREF _Toc370024787 �86��

static uint32 get_current_region(void);	� GOTOBUTTON _Toc370024788 � PAGEREF _Toc370024788 �86��

static void set_current_region(uint32 region);	� GOTOBUTTON _Toc370024789 � PAGEREF _Toc370024789 �86��

static StreamFile *open_file(char *fname,uint8 pri);	� GOTOBUTTON _Toc370024790 � PAGEREF _Toc370024790 �86��

static void close_file(StreamFile *fh);	� GOTOBUTTON _Toc370024791 � PAGEREF _Toc370024791 �86��

StreamFile::	� GOTOBUTTON _Toc370024792 � PAGEREF _Toc370024792 �87��

dword read(byte *dst,dword bytes);	� GOTOBUTTON _Toc370024793 � PAGEREF _Toc370024793 �87��

void seek(dword pos);	� GOTOBUTTON _Toc370024794 � PAGEREF _Toc370024794 �87��

dword tell(void);	� GOTOBUTTON _Toc370024795 � PAGEREF _Toc370024795 �87��

dword length(void);	� GOTOBUTTON _Toc370024796 � PAGEREF _Toc370024796 �87��

void wait(void);	� GOTOBUTTON _Toc370024797 � PAGEREF _Toc370024797 �87��

int32 busy(void);	� GOTOBUTTON _Toc370024798 � PAGEREF _Toc370024798 �88��

�

�

Sound API

The sound system is used for playing standard real time Dolby encoded sound effects, parsing loaded samples, and dynamic voice allocation for a limited number of DSP voices. There are 3 class types SoundSystem, Sound, and Sample. The SoundSystem class is the main class used to create Sound or Sample objects. The Sample class objects represent the actual digital sound data. The Sound class object represents a instance of a Sample. The number of Sounds or Samples is only limited by the amount of available memory.

Files

Includes

INC\IXSOUND.H

The header containing the SoundSystem, Sound, and Sample classes.

INC\STD.H	

The standard include file containing standard data types & error checking.

.\PROJECT.H

Project information file in your project directory, this contains information about the target platform and version.

Win95 Libraries

WIN95\LIBS\RELEASE\SOUND.LIB

A non-debug static library.

WIN95\LIBS\DEBUG\SOUND.LIB

A debug static library.

WIN95\LIBS\RELEASE\DSP.LIB

A non-debug static library.

WIN95\LIBS\DEBUG\DSP.LIB

A debug static library.

PSX Libraries

PSX\LIBS\SOUND.LIB

Non-debug library.

PSX\LIBS\DSP.LIB

Non-debug library.

�

Dynamic Voice Allocation

Since the number of sounds may be quite a few, and because of either hardware or software limitations, the actual number of voices available may be much less. The system used to dynamically allocate a sound to a voice, is handled by a priority based system. The priority of a sound is basically calculated on this formula.

	Priority = Volume + Pitch + User Assigned Priority

Obviously the sounds with the highest priorities get first shot at getting an available voice.

Supported Sound Formats

WIN95 Version - AIFF, WAVE, or RAW.

PSX Version - VAG or RAW.

Looping Sounds

Currently the only way to assign loop positions is by using the AIFF sound format. AIFF has an extra chunk to specify the loopback positions, and most AIFF sound editors support setting the loopbacks. I’ll look into the WAVE format, but currently I know of no information about loopback positions being specified in the WAVE format.

NOTE: The SoundSystem can be used with or without the Streamer.

SoundSystem::

static int32 install(void);

Description:

This member installs the sound system and makes it ready for use. See declare().

Parameters:

void

Returns:

int32

A 0 (zero) value if the sound system was install sucessfully, a non-zero value if it failed to install the sound system.

static void release(void);

Description:

This function releases all sound system resources including releasing the DSP. Note: This routine releases the DSP, if another system such as the Streamer is using the DSP this could cause some problems.

Parameters:

void

Returns:

void

static void declare(dword option, dword argument);

Description:

This function is used to pass platform specific information into the sound system, and onto the DSP if necessary. You want to use this function before you run install().

Parameters:

dword option

This parameter specifies which internal option to set. The available declare options are:

DECLARE_WHND - (win95) Declare a windows handle for the DirectSound object to be attached too. This option is required for the win95 version of IX.

DECLARE_DS - (win95) Declare a already allocated DirectSound object to use. Normally the DSP will allocate the DirectSound object and attach it to the window supplied by DECLARE_WHND. This allows you to allocate the DirectSound object in your high level code.

dword argument

This value is determined by the option, in the case of DECLARE_WHND this would be the window handle cast to a dword.

Returns:

void

Example:

void init_win95_game(void)

{

	SoundSystem::declare(DECLARE_WHND,(dword)main_window);

	SoundSystem::install();

	// SoundSystem ready for playing sound effects

}

static uint16 get_master_volume(void);

Description:

This function retrieves the current master volume setting.

Parameters:

void

Returns:

uint16

This returns the current master volume setting, a 16-bit value from 0 to 65535.

static void set_master_volume(uint16 volume);

Description:

This function set’s the master volume level.

Parameters:

uint16 volume

This is a 16-bit value from 0 to 65535, 0 being complete silence, to 65535 being full volume.

Returns:

void

static Sample *create_sample(void);

Description:

This member creates an object of the class type Sample. See Sample::parse_raw, Sample::parse_wav, Sample::parse_aiff, Sample::parse_vag.

Parameters:

void

Returns:

Sample *

static void free_sample(Sample *sample);

Description:

This function releases an Sample object.

Parameters:

Sample *sample

The pointer to the sample object to be freed.

Returns:

void

static void free_all_samples(void);

Description:

This function releases all allocated sample objects.

Parameters:

void

Returns:

void

static Sound *create_sound(Sample *sample);

Description:

This function creates an sound object, an instance of an sample. The created sound object may be controlled through it’s member functions. After creating a sound object, you are responsible for freeing the sound after your done using it, unless you call Sound::set_autofree(bool on) and turn on the autofree bit.

Parameters:

Sample *sample

This is the pointer to the sample object your creating an sound from.

Returns:

Sound *

A newly created sound instance.

static void free_sound(Sound *sound);

Description:

This function releases an allocated sound.

Parameters:

Sound *sound

A pointer to the sound to be released.

Returns:

void

static void free_all_sounds(void);

Description:

This function releases all allocated sounds.

Parameters:

void

Returns:

void

Sound::

void set_volume(uint16 volume);

Description:

This function set’s the volume of the sound.

Parameters:

uint16 volume

This is a value from 0 to 65535, 0 being silence. See Sound::get_volume.

Returns:

void

uint16 get_volume(void);

Description:

This function gets the assigned sound volume. See Sound::set_volume.

Parameters:

void

Returns:

uint16

This is the assigned sound volume, 0 to 65535, 0 being silence.

void set_pan(uint16 pan);

Description:

This function changes the location of a sound around the user. In all cases, even if Dolby is disabled the pan value is a 360(field. See Sound::get_pan.

Parameters:

uint16 pan

A value from 0 to 65535. 0 Front, 16384 Left, 32768 Rear, 49152 Right.

Returns:

void	

uint16 get_pan(void);

Description:

This function returns the current pan setting. See set_pan

Parameters:

void

Returns:

uint16

A pan value from 0 to 65535.

void set_pitch(int32 pitch);

Description:

This function assigns a pitch to the sound. The pitch value assigned can be negative, since it is added to the sample rate. Thus if this sounds sample was recorded at 11000 Hz, and the assigned sound pitch was -1000 Hz, then the actual playback rate of this sound will be 10000 Hz. PlayBack Rate = Pitch + Sample Rate. See get_pitch.

Parameters:

int32 pitch

This values valid range is variable based upon the recorded rate of the sample attached to this sound and the maximum sample rate of 44100 Hz.

Returns:

void

int32 get_pitch(void);

Description:

This member returns the currently assigned pitch. See set_pitch.

Parameters:

void

Returns:

int32

void set_pri(uint8 pri);

Description:

This function is used to assign a user priority level. This is used in conjunction with the volume and pitch to determine a final priority level for the sound, which is used in dynamic voice allocation.

Parameters:

uint8 pri

This value is the user assigned priority level, 0 is low priority, 255 is maximum priority.

Returns:

void

uint8 get_pri(void);

Description:

This function returns the currently assigned user priority level.

Parameters:

void

Returns:

uint8

A value from 0 to 255.

void set_autofree(int32 auto_free);

Description:

This functions activates or de-activates the auto free functionality of sounds. When auto free is active, which by default it is not, when a sound completes playing it will automatically have it’s memory released by the sound system. The best use for this function is for single fire sound effects that you don’t want to worry about at a later point in time. Once you activate the auto free flag and start the sound, you better not try to access the sound ever again, or risk a memory fault.

Parameters:

int32 auto_free

A 0 (zero) value to deactivate auto free, or a non-zero value to activate auto free.

Returns:

void

int32 playing(void);

Description:

This function is used to determine if a sound is still playing or not.

Parameters:

void

Returns:

int32

A non-zero value returns indicates that the sound is currently still playing, a zero value indicates that the sound is not playing.

void start(void);

Description:

This function starts the sound playing.

Parameters:

void

Returns:

void

void release(void);

Description:

This function is used to release a looping sound.

Parameters:

void

Returns:

void

void stop(void);

Description:

This function is used to stop a playing sound.

Parameters:

void

Returns:

void

Sample *get_sample(void);

Description:

This function returns the sample from which this sound was created.

Parameters:

void

Returns:

Sample *

A pointer to the sample from which this sound was created.

Sample::

void parse_vag(byte *vag,int32 bytes);

(PSX ONLY)

Description:

This function is used to assign a user loaded VAG file to the allocate sample instance.

Parameters:

byte *vag

A memory pointer to the loaded VAG file.

int32 bytes

The size of the loaded file in bytes.

Returns:

void

void parse_aiff(byte *aiff,int32 bytes);

(WIN95,MSDOS,X ONLY)

Description:

This function is used to parse a loaded AIFF file in memory

Parameters:

byte *aiff

A memory pointer to the loaded AIFF file.

int32 bytes

The size of the loaded file in bytes.

Returns:

void

void parse_wav(byte *wav,int32 bytes);

(WIN95,MSDOS,X ONLY)

Description:

This function is used to parse a loaded WAVE file in memory.

Parameters:

byte *aiff

A memory pointer to the loaded WAVE file.

int32 bytes

The size of the loaded file in bytes.

Returns:

void

void parse_raw(byte *raw,int32 bytes,int32 freq,int32 bits,int32 channels);

Description:

This function is used to parse raw waveform data.

Parameters:

byte *raw

A memory pointer to the raw waveform data.

int32 bytes

The size in bytes of the waveform.

int32 freq

The recorded frequency of the waveform. A value from 1000 to 44100.

int32 bits

The number of bits per sample, this should be 8 or 16.

int32 channels

The number of channels in the waveform, this should be 1 or 2.

Returns:

void

dword samples(void);

Description:

This function returns the total number of samples in the waveform.

Parameters:

void

Returns:

dword

The number of samples in the waveform.

int32 frequency(void);

Description:

This function returns the recorded frequency of the waveform.

Parameters:

void

Returns:

int32

The recorded frequency of the waveform (i.e. 22050 or 44100).

bool looping (void);

Description:

This function returns a boolean, which is non-zero if the waveform has the loop bit set.

Parameters:

void

Returns:

bool

A boolean value indicating whether the sample is looped.

void loop(bool on);

Description:

This function set’s the value of the loop bit inside of the sample.

Parameters:

bool on (on = TRUE)

A non-zero value to turn the loop bit on, a zero value to turn it off. This value is overridden to default to TRUE if no argument is provided.

Returns:

void

dword	get_loop_start (void);

Description:

This function returns the sample at which the loop begins.

Parameters:

void

Returns:

dword

The sample index of the loop start.

 void set_loop_start (dword start);

Description:

This function set’s the sample at which the loop begins.

Parameters:

dword start

A sample index, a integer < samples().

Returns:

void

 dword get_loop_end(void);

Description:

This function get’s the sample at which the loop ends.

Parameters:

void

Returns:

dword

The sample index of the loop end.

 void set_loop_end (dword end);

Description:

This function set’s the sample at which the loop ends.

Parameters:

dword end

A sample index, < samples().

Returns:

void

�Streamer API

The Streamer is a system designed to work with a signal file called a stream usually with the extension STR. The stream file may contain audio or data, or both. When used to hold audio and data, the code is designed in such a way as to allow random access async / sync file loading while playing music. However, when used just for data the streamer can provide a significant increase in load speeds off a CD-ROM, because by grouping file hierarchies together in a single file removes the need for reading directory information and localizes all of your needed data in a small area on the CD-ROM thus reducing seek times. A additional benefit of the Streamer when used for audio is digital music which can be interactive controlled by your program through the use of triggers and a intensity level.

Designing your program to use Streamer

The problems with using the streamer are the same as trying to get any data off a slow access medium like a CD-ROM, but are intensified when bandwidth is being used to play audio at the same time. The streamer is designed to make file loading and audio work together as to not get in each others way. Below I’ve listed some helpful hints, suggestions, problems & solutions.

WORK WITH YOUR DATA IN LARGE CHUNKS

Many times have I looked as some code, especially IFF loading and seen code loading data a BYTE AT A TIME. The programming gods frown upon this with great displeasure! At the very least when working with IFF’s load the whole file into memory and work with it from there, copy out the data you actually need, then throw the thing away.

STOP THE MUSIC WHEN STARTING A MISSION / LEVEL

Don’t chew up your CD’s bandwidth with audio when loading a lot of data at the start of a mission, the faster you load it, the faster you can turn the music back on. Who cares if you have 5 seconds of silence, gives the player a some time to contemplate their fate.

LOAD OBJECTS BEFORE THEY ARE VISIBLE IN THE BACKGROUND

Determine a good range some distance from your far-clipping range, when an object is within that range, start loading it in the background, objects that go beyond that range unload them. With some work and good design you can make a nice little system for loading objects async, it’s a lot of fun believe me ;)

CAN I PLAY MOVIES WHILE STREAMING AUDIO

Small ones yes, big ones good luck! It’s simply a question of bandwidth.

HOW BIG SHOULD MY AUDIO BUFFER BE

As you may or may not know, the size of the audio buffer is specified when the stream file is built. The audio buffer is the reason why you can go off and load data while the music is playing, the larger the buffer the longer you can stay away. The size of the audio buffer also affects the interactively of the music, the larger the buffer the more delay when the music wants to react to a event. I would suggest 3 seconds of audio is what your buffer should hold, this provides enough time for a x2 CD-ROM to seek to data, read data, and return to the audio.

Recommended Audio Buffer sizes for 22Khz, 16-bit, stereo:

PSX 65K (25.2k per second)

PC 256K (88k per second)

3DO 128K (44k per second)

�Files

Includes

INC\IXSTREAM.H

The header containing the Streamer & StreamFile classes.

INC\IXSTRFS.H

This header contains the file structures of the stream file.

INC\STD.H	

The standard include file containing standard data types & error checking.

.\PROJECT.H

Project information file in your project directory, this contains information about the target platform and version.

Win95 Libraries

WIN95\LIBS\RELEASE\STREAMER.LIB

WIN95\LIBS\DEBUG\STREAMER.LIB

The Streamer system.

WIN95\LIBS\RELEASE\DSP.LIB

WIN95\LIBS\DEBUG\DSP.LIB

Digital Signal Processor API

WIN95\LIBS\RELEASE\REFPACK.LIB

WIN95\LIBS\DEBUG\REFPACK.LIB

RefPack Compressor / decompressor.

PSX Libraries

PSX\LIBS\STREAMER.LIB

The Streamer system.

PSX\LIBS\DSP.LIB

Digital Signal Processor API

PSX\LIBS\REFPACK.LIB

RefPack Compressor / decompressor.

Stream File Format

The format of a stream file is very straightforward.

FILE_StreamHeader

The header is located at the start of the file. It has information on where to find the other structures in the stream file, it also has information on the format of the sound.

Stream Data / Audio

Between the header, and the rest of the data structures at the end of the file is the audio and data.

FILE_AudioRegion		0 - n

FILE_AudioBranch		0 - n

FILE_AudioTrigger		0 - n

FILE_FileInfo 		0 - n

FILE_FileChunk		0 - n

FILE_FilePacket		0 - n

<eof>

�Streamer::

static int32 install(void);

Description:

This function initializes the streamer system, call this before calling any other functions with the exception of declare().

Parameters:

void

Returns:

int32

A zero on success, a non-zero on failure.

static void release(void);

Description:

This function releases the streamer. Be cautious when using the sound system also, as this functions also releases the DSP which the sound system also uses.

Parameters:

void

Returns:

void

static void declare(dword option,dword argument);

Description:

This function is used to pass platform specific information into the streamer, and onto the DSP if necessary. You want to use this function before you run install().

Parameters:

dword option

This parameter specifies which internal option to set. The available declare options are:

DECLARE_WHND - (win95) Declare a windows handle for the DirectSound object to be attached too. This option is required for the win95 version of IX.

DECLARE_DS - (win95) Declare a already allocated DirectSound object to use. Normally the DSP will allocate the DirectSound object and attach it to the window supplied by DECLARE_WHND. This allows you to allocate the DirectSound object in your high level code.

dword argument

This value is determined by the option, in the case of DECLARE_WHND this would be the window handle cast to a dword.

Returns:

void

static void set_dev_mode(int32 on);

Description:

This function is used to turn development mode on or off. When development mode is on then files are not loaded from the stream file, but from the local file system. You will find that you’ll keep development mode turned on for most of your project development, since building stream files every time your data changes is not any fun.

Parameters:

int32 on

A non-zero turns development mode on, a zero turns it off.

Returns:

void

static int32 open(char *fname);

Description:

This function opens the specified stream file, after opening the streamer is now ready to play audio and load data.

Parameters:

char *fname

The filename and path to the stream file.

Returns:

int32

A zero on success, a non-zero on failure.

static void close(void);

Description:

Close the opened stream file.

Parameters:

void

Returns:

void

static void play(void);

Description:

Begin playing the stream audio.

Parameters:

void

Returns:

void

static void stop(void);

Description:

Stop playing the stream audio.

Parameters:

void

Returns:

void

static void pause(void);

Description:

Pause the audio, restart the audio by calling play().

Parameters:

void

Returns:

void

static void clear(void);

Description:

This function flushes all audio from the buffers.

Parameters:

void

Returns:

void

static void set_intensity(uint8 intensity);

Description:

Set the intensity level, this will affect how the audio branches from region to region,

Parameters:

uint8 intensity

This is a integer value from 0 (STREAMER_MIN_INTENSITY) to 100 (STREAMER_MAX_INTENSITY).

Returns:

void

static uint8 get_intensity(void);

Description:

Get the current intensity level.

Parameters:

void

Returns:

uint8

This will be a value from 0 (STREAMER_MIN_INTENSITY) to 100 (STREAMER_MAX_INTENSITY).

static void set_trigger(int8 trigger);

Description:

Set the current trigger, if another trigger is already set and hasn’t be responded too yet, then this will overwrite that trigger, triggers are not queued.

Parameters:

int8 trigger

A integer value from 0 (STREAMER_MIN_TRIGGER) to 63 (STREAMER_MAX_TRIGGER).

Returns:

void

static int8 get_trigger(void);

Description:

This function returns the currently set trigger, this value will be -1 when no trigger is currently set.

Parameters:

void

Returns:

int8

The current trigger, it will be -1 when no trigger is set.

static void force_trigger(int8 trigger);

Description:

Normally when a trigger is set, the streamer plays until a matching trigger is found in the current region and follows that branch. This function causes the streamer to search forward through the audio regions looking for a matching trigger, when one is found the current region is set to the destination of that trigger and all audio is flushed from the buffers. Use this function with care, because the results can be unusual.

Parameters:

int8 trigger

A integer value from 0 (STREAMER_MIN_TRIGGER) to 63 (STREAMER_MAX_TRIGGER).

Returns:

void

�static void set_volume(uint16 volume);

Description:

Set the streamer audio level.

Parameters:

uint16 volume

A value from 0 (STREAMER_MIN_VOLUME) to 65535 (STREAMER_MAX_VOLUME).

Returns:

void

static uint16 get_volume(void);

Description:

Get the current volume setting.

Parameters:

void

Returns:

uint16

A value from 0 (STREAMER_MIN_VOLUME) to 65535 (STREAMER_MAX_VOLUME).

static uint32 get_current_region(void);

Description:

Get the current audio region. This function is usually used when the streamer needs to be closed, and you want to restart the music at the place it left off by using set_current_region().

Parameters:

void

Returns:

uint32

This is the currently loading region index.

static void set_current_region(uint32 region);

Description:

Set the current region.

Parameters:

uint32 region

A region index returned by get_current_region().

Returns:

void

static StreamFile *open_file(char *fname,uint8 pri);

Description:

Open the specified file inside the stream with the user supplied priority level.

Parameters:

char *fname

The path and file name of the file to be opened.

uint8 pri

A priority level from 0 (low) to 255 (high). The priority level is used when multiple files are open and the streamer must decide which read requests to service first.

Returns:

StreamFile *

The file handle, used for working with the open file. See StreamFile::

�static void close_file(StreamFile *fh);

Description:

Close the open stream file handle.

Parameters:

StreamFile *

A handle provided by open_file().

Returns:

void

StreamFile::

dword read(byte *dst,dword bytes);

Description:

Read data from the stream file from the current position.

Parameters:

byte *dst

Destination to read the data too.

dword bytes

The number of bytes to read.

Returns:

dword

The number of bytes actually read.

void seek(dword pos);

Description:

Set the current file position..

Parameters:

dword pos

A byte offset in the file.

Returns:

void

dword tell(void);

Description:

Get the current byte offset in the open file.

Parameters:

void

Returns:

dword

A byte offset in the file.

dword length(void);

Description:

Get the length of the file.

Parameters:

void

Returns:

dword

The length of the file in bytes.

�void wait(void);

Description:

Block until read completes.

Parameters:

void

Returns:

void

int32 busy(void);

Description:

Get the busy status of the open file.

Parameters:

void

Returns:

int32

A non-zero value is returned if the open file is still reading, a zero is returned if the file is idle.

�Appendix B - Scripting Language Specification

FLAGS/VARIABLES

A flag or variable is simply a named piece of data with an initial value.

A flag will belong to a variable list.

A flag name can be a free form any-length string.

The flag name must be unique to its variable list.

The variable list will belong to a game data file. (ex. Series or Mission file)

The game can have a hierarchy of variable lists, forming individual scopes.

The “series” variable list can be thought of as global flags.

The “mission” variable lists can be thought of as local flags.

Flag names are converted internally into unique 32-bit code via a CRC function.

Flag types limited to simple types (ie. int, float) or enum’s defined by the user.

Scope… programs can use local and global variables. For the interpreter to resolve a variable reference it should be able to search the Mission variables for a match and if not found search the Series variables.

It is recommended that the game interpreter pre-scan the program to convert variable CRC’s into actual variable pointer, to avoid searching at run-time.

COMMANDS

All commands are internally represented as simple op-codes and parameters.

The output format for a single command is:

	int32 id;			// CRC of command name

	int32 size;		// 0..n rounded to 4-byte boundaries

	char args[size];

There is a list of predefined system commands to facilitate C-like operations.

	_Assign(dst,value)		dst = value

	_Add(dst,src,value)		dst = src + value

	_Sub(dst,src,value)		dst = src - value

	_Mul(dst,src,value)		dst = src * value

	_Div(dst,src,value)		dst = src / value

	_And(dst,src,value)		dst = src & value

	_Or(dst,src,value)		dst = src | value

	_Xor(dst,src,value)		dst = src ^ value

	_Label(num)			@1

	_Goto(num)			goto @1

_Compare(src,cmp_type,value)	if (src CMP value)

	_BeginBlock			{

	_EndBlock			}

	_Else				else

The user can define custom commands through a configuration header file.

	extern void SetPilot (enum Roster pilot);

This should be the main way of implementing game specific operations.

Name Mangling

All system commands names should be prefixed with a ‘_’ character.

Multiple types are supported in system commands via name mangling.

Compiler deciphers types for system commands from user context.

	USER ENTERS…		COMPILES TO…

	flag = int			_Assign_Fi

	flag = float			_Assign_Ff

	flag1 = flag2			_Assign_FF

Math Operations

Although commands are limited

	VALID ENTERIES…		COMPILES TO..

	flag += value			_Add_FFi(flag,flag,value)

	flag = flag + value		_Add_FFi(flag,flag,value)

	INVALID ENTRIES

	flag = flag1 + flag2 + 0		must simplify expression

	flag = 4 + flag			no parameter juggling YET

	flag = 4 - flag			no reverse subtract YET

CONDITIONAL OPERATIONS

	VALID ENTERIES…		COMPILES TO..

	if (flag < 5)			_Compare_Fii(flag,’<’,5)

	Note: ‘<’ is symbolic… there is an enumerated type that defines the compare types

enum CompareType

{

	CMP_Equal,

	CMP_NotEqual,

	CMP_LessThan,

	CMP_LessThanEqual,

	CMP_MoreThan,

	CMP_MoreThanEqual,

};

LABELS

	the current notation for at label is “@#”

	@1 is a valid label

	to use character strings instead of numbers would be a significant task

	CRC’ing the name would require the ability to decompile it to a string

	the “goto” command is used to move execution to a new location

	@5				_Label(5)

	if (flag == 0)			_Compare(flag,’=’,0);

	 goto @5			_Goto(5)

	currently the interpreter must search the program for labels…

	It should be possible for the editor or the game to pre-scan the programs

	and fixup label values into relative addresses (not YET)

RETURN VALUES

	flag = GetPilot(ship_type);

Example Program:

// sample program script (test.wc)

{

// Init counter

i = 0;

// Label @1

@1

ActivateObject(7);

i += 1;

if (i < 10)

{

goto @1

}

}

�APPENDIX C - MISSION EDITOR

MED Sector

The Sector file defines the static appearance and default behavior for a continuous region of space (note: a jump point is a discontinuity in space) This definition can include the layout of stars/planets for the background, the placement of asteroid fields, placement of space stations and jump points, random encounter probabilities and any other constant data that pertains to a region of space.

With MED, the designers can create a Sector template that will consist of the stars, planets, heavenly bodies, ambient light levels, other lighting levels (point and directional lights), bases, etc. This sector template can then be loaded and modified for a single mission (friendly and enemy ships created, etc.) This would keep continuity between missions that happen in the same region of space in the game.

Since a Mission File has the ability to supplement any and all Sector data, it is advisable to NOT keep story/scenario specific information in the sector data. (Ex. You might want to use a collection of constant sector files for an on-line persistent world where the whole universe could change from month to month. The only new files a user would need would be Mission Files.)

The separation of Sector and Mission data may seem strange for the basic Wing Commander scenario, but the added flexibility is important for a game like Privateer in which regions of space are commonly re-used.

The Sector file format is an IFF format data file whose outermost form name is “SECT”. This form is simple a wrapper for a LibTools-standard property list file. Sequential chunks of user-definable data specific to sectors.

This Sector file below is depicted below in MIFF format for textual clarity. Editing and construction will be performed with an editor with a complete visual interface. Output of the editor will be the file used by the game. A sample of the interface follows.

Example Sector file : “sectorK9.sct”

	FORM “SECT”

	{

		CHUNK “NAME”

		{

			“Gamma Quad”

		}

		FORM “PROP”		// object property list

		{

			FORM “OBJ”

			{

				CHUNK “BASE”

				{

					x,y,z

					frame

					OBJTYPE_JUMP

				}

				CHUNK “APPR”

				{

					“stargate”

				}

				CHUNK “JUMP”

				{

					“Gamma 1”		// this point name

					“sector-z1”		// destination sector

					“Zeta 2”			// destination gate

				}

				CHUNK “NEAR”

				{

					FILTER_OBJECTS

					100m

					“lightning”		// when object is within 100m

								// animate lightning

				}

			}

			FORM “OBJ”

			{

				CHUNK “BASE”

				{

					x,y,z

					frame

					OBJTYPE_SHIP

				}

				CHUNK “APPR”

				{

					“dralthi”

				}

			}

			FORM “OBJ”

			{

				CHUNK “BASE”

				{

					x,y,z

					frame

					OBJTYPE_AREA

				}

				FORM “FILL”	// a random field of objects

				{

					CHUNK “SPHR”	// what is the shape of the asteroid field

					{

						250 km radius

					}

					CHUNK “DENS”	// what is the density for filling the

							// field with objects

					{

						0.05 objects per cubic-meter

					}

					CHUNK “PROB”	// probability of placing object

					{

						50%, “asteroid0”

					}

					CHUNK “PROB”	// probability of placing object

					{

						25%, “asteroid1”

					}

					CHUNK “PROB”	// probability of placing object

					{

						25%, “asteroid2”

					}

				}

				FORM “OBJ”

				{

					// this child object would be relative to the asteroid field

				}

			}

		} // PROP

	}

�

Figure � SEQ Figure * ARABIC �5� : MED Screen Shot - Creating a "Sector"

Creating a sector is simply choosing an object from a list of objects and positioning them in 3D space represented by a 2D grid.

The designer can put any object available in the game on the map window, while having the ability to change the object’s attributes (AI skill level, heading, direction, timing information., etc.) at any time. Also included is the ability to insert, wherever necessary, mission-specific sounds and communications messages.

Here you can see where you see the mission map’s <X,Z> layout. X and Z are laid out horizontally and vertically. There are buttons to zoom in and out. The editor tries to use as much of the Windows 95 interface as possible. For example : right-clicking on an object brings up a properties dialogue, allowing the user to change its values. Left-clicking and dragging, will reposition the object. Holding the Ctrl-key while dragging the object will copy the object, and holding the Shift-key while dragging the object, will snap the object to an grid line to allow perfect and uniform placement.

MED Room

The Room file defines static point-and-click surfaces. These include hotspots, sprites, animations, music, etc.

The Gameflow file is an IFF format data file whose outermost form name is “FLOW”. This form is simply a wrapper for a LibTools-standard property list. The contents are a sequential tree list of user-definable data blocks.

The Room file below is depicted below in MIFF format for textual clarity. Editing and construction will be performed with an editor with a complete visual interface. Output of the editor will be the file used by the game. A sample of the interface follows.

FORM “FLOW”

{

	CHUNK “NAME”

	{

		“Tiger’s Claw”

	}

	FORM “HOTS” // example

	{

		CHUNK “NGON”

		{

			x,y, x,y, x,y, x,y

		}

		CHUNK “SPRT”

		{

			“data\hobbes.spr”

		}

		CHUNK “OVER”	// ie. OnMouseOver()

		{

			ANIM, +

			TEXT, IDT_GO_TO_BARRACKS

		}

		CHUNK “LCLK”	// ie. OnLBtnClick()

		{

			DOOR = “room2.flo”�		}

	}

	FORM “PROP”			// object property list

	{

		// hotspots, sprites, animations, conversations, etc.

		…

	}

}

� EMBED Word.Picture.6 ���

Figure � SEQ Figure * ARABIC �6� : MED Screen Shot - Creating a "Room"

Creating a room is accomplished by selecting the gameflow background, and defining “hot spots” that perform actions when clicked.

MED Mission

The Mission file defines temporary scenario changes for all elements of the game environment. This definition will include new objects and behaviors for sectors, new hotspots and conversations for gameflow rooms and any other data modifications the current state of the story needs to affect.

Essentially the mission data is a list of modifications to make to the normally static regions the player passes through. The game engine should allow multiple missions to be active. When the game requests static data for a location it should also ask the active Mission(s) for any extra information about a location.

For example: a single Mission File “test.msn” could contain a list of objects for “sectorB1.sct” (ie. ships, navpoints, programs) and a list of objects for “sectorZ2.sct” and a list of objects for “tigrclaw.flo” (ie. hotspots, sprites, animations, doorways, conversations). When the player enters “sectorB1” it would load the static data from the Sector File and then add objects from “test.msn” to the active scenario. If the player were then to land on the Tiger’s Claw the game would load the static data from the Gameflow File and then add objects from “test.msn” to modify the rooms.

The Mission File is an IFF format data file whose outermost form name is “MISN”. This form is simply a wrapper for a LibTools-standard property list. The contents are a sequential tree list of user-definable data blocks.

The Room file below is depicted below in MIFF format for textual clarity. Editing and construction will be performed with an editor with a complete visual interface. Output of the editor will be the file used by the game. A sample of the interface follows.

FORM “MISN”

{

	CHUNK “FLAG”		// local flags with default values

	{

		dword 0,0,0,0,0,0,0,0

	}

	FORM “MODS”			// modifications for SECTOR file

	{

		CHUNK “FILE”

		{

			string “data\sectors\sector-j1.sct”

		}

		FORM “PROP”		// property list of objects to add to sector

		{

			// programs, nav points, jump gates, objects

			…

		}

	}

	FORM “MODS”			// another SECTOR that the mission affects

	{

		CHUNK “FILE”

		{

			string “smdata\sector\sector-j1.sct”

			// Note: example of a “Secret Missions” disk scenario filename

		}

		FORM “PROP”

		{

			…

		}

	}

	FORM “MODS”

	{

		CHUNK “FILE”

		{

			string “data\gameflow\tigerclw.flo”

		}

		FORM “PROP”		// object list

		{

			// programs, nav points, jump gates, objects

			…

		}

	}

}

�

Figure � SEQ Figure * ARABIC �7� : MED Screen Shot - Creating a "Mission"

Missions are composed of Sectors and Rooms. The designers can associate functions (or Programs) with the Sector objects and the Room hotspots. These Programs use the FLO scripting language.

MED Series

The Series file is to define the presentation and connection of missions as dictated by the story. This includes a list of global flags and their default values and a collection of FLO scripts that activate missions, launch movies, modify flags and anything else that serves to sequence the player through the game story.

The Series file is the root file for a game scenario. All other data files are referenced through the contents of the series data. Global variables (GAME FLAGS) will receive their own window. It displays a list of pertinent variables (how many ships are dead, whether the base was destroyed). New variables can be placed, default values to be assigned, and variable properties and types can be updated.

For Example: a series file “WC5.SRS” might contain a BIRTH program that plays an intro movie, activates missions A1 and A2 and places the player in Starbase X Room 4. The UPDATE program might wait for A1 and A2 to be completed before playing a travel movie and activating mission B1. The DEATH program for the series would play a win/lose movie and scroll the credits finally dumping back to the title sequence.

The Series File is an IFF format data file whose outermost form name is “SERS”. This form is simply a wrapper for a LibTools-standard property list. The contents are a sequential tree list of user-definable data blocks.

The Series file below is depicted below in MIFF format for textual clarity. Editing and construction will be performed with an editor with a complete visual interface. The Series file will be a FLO program that will also be compiled by MED. Output of the editor will be the file used by the game.

	FORM “SERS”

	{

		FORM PATH

		{

			CHUNK MISN

			{

				string “data\missions\%s.msn”	// sprintf(id) format string

			}

			CHUNK SECT

			{

				string “data\sectors\%s.sct”	// sprintf(id) format string

			}

			CHUNK FLOW

			{

				string “data\gameflow\%s.flo”	// sprintf(id) format string

			}

		}

		CHUNK “FLAG”			// global flags

		{

			0,100,2,17,0,0,0,0,0,1,0,0,0,0

		}

		CHUNK “BEGN”			// birth program

		{

			PlayMovie “Intro”

			ActivateEvent “A-series”

			GameFlow “TigersClaw”,1

		}

		CHUNK “UPDT”			// update program

						// Actual program will be a compiled

						// script from MED

		{

			if (Global_Sword_Found)

				ActivateMission “misn-x”

			if (Global_Lose_Game)

				PlayMovie “TheEnd”

				Jump “Title”

		}

		FORM “EVNT”

		{

			CHUNK “NAME”

			{

				EVENT_INACTIVE

				string “A-series”

			}

			CHUNK “BEGN”

			{

				ActivateMission “misn-a1”

				ActivateMission “misn-a2”

				ActivateMission “misn-a3”

			}

			CHUNK “UPDT”

			{

				if (Global_a2_complete)

					DeactivateEvent “A-series”

					ActivateEvent “B-series”

			}

			CHUNK “END”

			{

				DeactivateMission “misn-1”

				DeactivateMission “misn-2”

				DeactivateMission “misn-3”

			}

		}

		FORM “EVNT”

		{

			CHUNK “NAME”

			{

				EVENT_INACTIVE

				string “B-series”

			}

			…

		}

		FORM “MISN”

		{

			CHUNK “FILE”

			{

				string “misn-a1”

			}

			CHUNK “FLAG”

			{	

				0,0,0,0

			}

			FORM “SECT”

			{

				CHUNK “NAME”

				{

					“Gamma Quad”

				}

				FORM “OBJS”

				{

					…

				}

			}

			CHUNK “LINK”

			{

				if (OnComplete)

					Deactivate “misn-a1”

					Activate “misn-b2”

			}

		}

	}

Sample MED Configuration Files

The mission system programmer will configure the editor for the designers. Sample configuration files will prototype actual script program functions to be used in the game. This will allow the MED editor to expand functionality without recompilation of the editor, and will allow the editor to be used to any type of game.

The following file is provided as a sample for tailoring the game to a Wing Commander. The user commands section is where the definitions and function prototypes are placed.

	PROGCMDS.CFG

//

// COMMANDS and PARAMETERS for PROGRAMS

//

//---

// SYSTEM COMMANDS - Do Not Modify!

//---

typedef int FlagId;

typedef int ObjectId;

// Flow of Control

extern void _Label (int label_num);		// @123

extern void _Goto (int label_num);			// goto @123;

extern void _Call (int crc_routine);

extern void _End (void);				// aka: return from

// sub-routine

extern void _Fatal (int err);

extern void _Blank (void);				// purely for making script

// code look nicer

extern void _BeginBlock (void);			// "{"

extern void _EndBlock (void);			// "}"

extern void _Else (void);				// "else"

// Assignment - compiler generated commands

extern void _Assign_Fi (FlagId f, int value);	// "flag = 1"

extern void _Assign_Ff (FlagId f, float value);	// "flag = 3.1415"

extern void _Assign_FF (FlagId f, FlagId v);	// "flag = tmp"

// Comparison - compiler generated commands

enum CompareType

{

	CMP_Equal,

	CMP_NotEqual,

	CMP_LessThan,

	CMP_LessThanEqual,

	CMP_MoreThan,

	CMP_MoreThanEqual,

};

extern int _Compare_Fii (FlagId f, CompareType cmp, int value);	// "if (f == 1)"

extern int _Compare_Fif (FlagId f, CompareType cmp, float v);	// "if (f >= 3.1415)"

extern int _Compare_FiF (FlagId f, CompareType cmp, FlagId v);	// "if (f < tmp)"

// Math - compiler generated commands

extern void _Add_FFi (FlagId dst, FlagId src, int value);	// "dst = src + 1"

extern void _Add_FFf (FlagId dst, FlagId src, float value);	// "dst = src + 3.1415"

extern void _Add_FFF (FlagId dst, FlagId src, FlagId v);		// "dst = src + tmp"

extern void _Sub_FFi (FlagId dst, FlagId src, int value);	// "dst = src - 1"

extern void _Sub_FFf (FlagId dst, FlagId src, float value);	// "dst = src - 3.1415"

extern void _Sub_FFF (FlagId dst, FlagId src, FlagId v);		// "dst = src - tmp"

extern void _Mul_FFi (FlagId dst, FlagId src, int value);	// "dst = src * 1"

extern void _Mul_FFf (FlagId dst, FlagId src, float value);	// "dst = src * 3.1415"

extern void _Mul_FFF (FlagId dst, FlagId src, FlagId v);		// "dst = src * tmp"

extern void _Div_FFi (FlagId dst, FlagId src, int value);	// "dst = src / 1"

extern void _Div_FFf (FlagId dst, FlagId src, float value);	// "dst = src / 3.1415"

extern void _Div_FFF (FlagId dst, FlagId src, FlagId v);		// "dst = src / tmp"

//---

// USER COMMANDS (game specific)

//---

typedef unsigned char byte;

typedef unsigned short word;

typedef unsigned long dword;

enum PilotNames

{

	CactusJack,

	LongTallSally,

	WildEyedJack,

	DickTracy,

	SuperDad

};

enum ShipTypes

{

	Dralthi=1,

	Ralari,

	TigersClaw=5,

	Subaru,

	Vindicator=10,

	Excalibur,

	X_Wing,

	TieFighter

};

typedef int IntelLevel;					// RANGE(0,100)

typedef float PatrolRadius;				// RANGE(0,100000)

typedef float Range;					// RANGE(0,999999)

extern void Test (byte b, short s, dword d);

extern void SetShipType (ShipTypes ship);

extern void SetWingman (ObjectId w);

extern void SetPilot (PilotNames p);

extern void SetIntelligence (IntelLevel i);

extern void SetPatrolRadius (PatrolRadius r);

extern void Explode (void);

extern void SetTarget (ObjectId t);

extern void ActivateObject (ObjectId id);

extern void DeActivateObject (ObjectId id);

extern Range GetDistance (ObjectId o1, ObjectId o2);

extern void StopMission (void);				//int value=0);

extern void ExitMission (int success);

MED will use the input configuration files to create header files that should be included with the game. The FLO compiler will CRC or “tokenize” the functions and types so that the output data stream can be interpreted in the game.

A sample output header file to be included with the game is listed below. The function names of the input file are tokenized (and preceded with CMD_) and structures describing the arguments are created (and preceded with ARGS_).

//---

/*

	PROGCMDS_H

	Wing # (c)1996 ORIGIN

	10-09-96 auto-created (pci@libtools)

*/

//---

#ifndef PROGCMDS_H

#define PROGCMDS_H

//---

// CMD defintions

//---

#define CMD__Label 0xF49C32D3

struct ARGS__Label

{

	int label_num;

};

#define CMD__Goto 0x695574B8

struct ARGS__Goto

{

	int label_num;

};

#define CMD__Call 0xF7BB0706

struct ARGS__Call

{

	int crc_routine;

};

#define CMD__End 0x549EB3B7

#define CMD__Fatal 0xC2EB30B4

struct ARGS__Fatal

{

	int err;

};

#define CMD__Blank 0xC610A65E

#define CMD__BeginBlock 0x15FBBB11

#define CMD__EndBlock 0x008277E1

#define CMD__Else 0x6E8E7DB3

#define CMD__Assign_Fi 0x5414BB49

struct ARGS__Assign_Fi

{

	FlagId f;

	int value;

};

#define CMD__Assign_Ff 0xC4ABA6D8

struct ARGS__Assign_Ff

{

	FlagId f;

	float value;

};

#define CMD__Assign_FF 0xFFC58610

struct ARGS__Assign_FF

{

	FlagId f;

	FlagId v;

};

#define CMD__Compare_Fii 0x7D04E63F

struct ARGS__Compare_Fii

{

	FlagId f;

	enum CompareType cmp;

	int value;

};

#define CMD__Compare_Fif 0xEDBBFBAE

struct ARGS__Compare_Fif

{

	FlagId f;

	enum CompareType cmp;

	float v;

};

#define CMD__Compare_FiF 0xD6D5DB66

struct ARGS__Compare_FiF

{

	FlagId f;

	enum CompareType cmp;

	FlagId v;

};

#define CMD__Add_FFi 0xE499DC9F

struct ARGS__Add_FFi

{

	FlagId dst;

	FlagId src;

	int value;

};

#define CMD__Add_FFf 0x7426C10E

struct ARGS__Add_FFf

{

	FlagId dst;

	FlagId src;

	float value;

};

#define CMD__Add_FFF 0x4F48E1C6

struct ARGS__Add_FFF

{

	FlagId dst;

	FlagId src;

	FlagId v;

};

#define CMD__Sub_FFi 0x531275E6

struct ARGS__Sub_FFi

{

	FlagId dst;

	FlagId src;

	int value;

};

#define CMD__Sub_FFf 0xC3AD6877

struct ARGS__Sub_FFf

{

	FlagId dst;

	FlagId src;

	float value;

};

#define CMD__Sub_FFF 0xF8C348BF

struct ARGS__Sub_FFF

{

	FlagId dst;

	FlagId src;

	FlagId v;

};

#define CMD__Mul_FFi 0xDBC32C14

struct ARGS__Mul_FFi

{

	FlagId dst;

	FlagId src;

	int value;

};

#define CMD__Mul_FFf 0x4B7C3185

struct ARGS__Mul_FFf

{

	FlagId dst;

	FlagId src;

	float value;

};

#define CMD__Mul_FFF 0x7012114D

struct ARGS__Mul_FFF

{

	FlagId dst;

	FlagId src;

	FlagId v;

};

#define CMD__Div_FFi 0x101F2404

struct ARGS__Div_FFi

{

	FlagId dst;

	FlagId src;

	int value;

};

#define CMD__Div_FFf 0x80A03995

struct ARGS__Div_FFf

{

	FlagId dst;

	FlagId src;

	float value;

};

#define CMD__Div_FFF 0xBBCE195D

struct ARGS__Div_FFF

{

	FlagId dst;

	FlagId src;

	FlagId v;

};

#define CMD_Test 0x59090E2E

struct ARGS_Test

{

	byte b;

	short s;

	dword d;

};

#define CMD_SetShipType 0xC3AC8939

struct ARGS_SetShipType

{

	enum ShipTypes ship;

};

#define CMD_SetWingman 0xB354A73D

struct ARGS_SetWingman

{

	ObjectId w;

};

#define CMD_SetPilot 0x18695FFB

struct ARGS_SetPilot

{

	enum PilotNames p;

};

#define CMD_SetIntelligence 0x59EB8249

struct ARGS_SetIntelligence

{

	IntelLevel i;

};

#define CMD_SetPatrolRadius 0xA9CEFA11

struct ARGS_SetPatrolRadius

{

	PatrolRadius r;

};

#define CMD_Explode 0x06A2CA6F

#define CMD_SetTarget 0x3BF2AC3D

struct ARGS_SetTarget

{

	ObjectId t;

};

#define CMD_ActivateObject 0x3C422148

struct ARGS_ActivateObject

{

	ObjectId id;

};

#define CMD_DeActivateObject 0xB7B4605D

struct ARGS_DeActivateObject

{

	ObjectId id;

};

#define CMD_GetDistance 0xE534763F

struct ARGS_GetDistance

{

	ObjectId o1;

	ObjectId o2;

};

#define CMD_StopMission 0xF3C255FC

#define CMD_ExitMission 0x58EDCC8A

struct ARGS_ExitMission

{

	int success;

};

//---

#endif // PROGCMDS_H

Program Scripting Design (Script Commands)

Flags

SetLocalFlag(Flagname)

IncrementLocalFlag(Flagname)		// ++

DecrementLocalFlag(Flagname)		// --

ClearLocalFlag(Flagname

SetGlobalFlag(Flagname)

IncrementGlobalFlag(Flagname)

DecrementGlobalFlag(Flagname)

ClearGlobalFlag(Flagname)

Object

Attack(TargetObject) and Attack(TargetObject, WithinRange)

MustAttack(TargetObject)					//Ignore all other enemies

PriorityAttack(TargetObject1, TargetObject2, TargetObject3)

Defend(TargetObject or Location) and Defend(TargetObject or Location, WithinRange)

PriorityDefend(TargetObject1, TargetObject2, TargetObject3)

Ignore(EnemyType) and Ignore(Target1, Target2, etc.)

Harass(TargetObject, Location)				//Attack, then lure to location

Evade(EnemyType) and Evade (TargetObject)

Patrol(Location, Location, Location, etc.) and Patrol(Location, Location…WithinRange, Speed)

Goto(Location, WithinRange) and Goto(Location, Speed) 	

MustGo (Location)	

SetWingman(TargetObject) and SetWingman(TargetObject, RelativePosition:X,Y,Z)

Follow(TargetObject)

ActivateObject(TargetObject or Area) and ActivateObject(TargetObject, RelativePosition:X,Y,Z)

DeactivateObject(ObjectName)

SetObjectPropertyFlag(ObjectFlag)

ClearObjectPropertyFlag(ObjectFlag)

JumpIn(Object, Location)

JumpOut(Object, Location)

Launch()

Land(Object) and Land(Object, BayNumber)

Dock(Object)

Undock()

SendComm(CommMovieName)			//Separate system to handle comm branching

SuppressMessages(CastMember)

PlaySfx(SfxName)

PlayMovie(MovieName)

Wait(Seconds)

Create(ObjectType, X, Y, Z) and Create(ObjectType, RelativeObject, Xoff, Yoff, Zoff)

CreateWave(GroupName) and CreateWave(GroupName, RelativeObject, Xoff, Yoff, Zoff)

Tractor(TargetObject)

SwitchCamera(NewPosition)

TestObjectPropertyFlag(ObjectFlag)

Eject()

Object Properties

Type

Ship (Many different types of ships)

NavPoint

CommandPoint

JumpPoint

Timer (A timer can have birth and Death events, so when the time expires, commands are run)

Status flags (Boolean)

VisibleInNavMap

Cloak

Baseship		//Player can only land if this bit is set

Active

Dead

Leeched

Follower 		//for Autopilot

Collision

Invunerable

HitPlayer

HitFriendly

Status flags (variables)

ShieldHits

ArmorHits

Loadout (if ShipType)

Cargo

Weapons

AI (if ShipType)

Flags

HostileToPlayer

HostileToRace1

HostileToRace2

Skill

Ace

Average

Wimp

Pilot

GenericRace1

GenericRace2

SpecificCharacter

Scripting logic

Used to compare flags and variables. Evaluate to determine which script commands run. Comparisons can include object property flags/variables, timer values, local and global mission flags.

Logical expression ? expression (script command) : conditional expression (script command)

If / else	

<,>,<=,>=, ==, !=

Events

When these conditions are checked every game loop. When the conditions are met, ScriptCommands are exectuted

Birth

When an object is created

Death

When Object dies

Range

UserDefinable Range. When the player (or some other ship) crosses these boundaries, run a ScriptCommand

User Defined (ArmorHit, ShieldHit, 80%Damaged, etc.)

When theses conditions are met, run a ScriptCommand. These can be defined using a macro that represents a combination of Logical comparisons and script commands.

Example Armor Hit:

If ([sourceObject.]ArmorHit > 0) ? expression

TimeRange

At this time (absolute mission time) run these ScriptCommands

Logic Operations

If (FlagName)

	ScriptCommand1

	ScriptCommand2

	…

else

	ScriptCommand1

	ScriptCommand2

OR

If (conditional)

	ScriptCommand1

	ScriptCommand2

	…

else

	ScriptCommand1

	ScriptCommand2

�

APPENDIX D - DOCUMENT REVISION HISTORY

Version: 2.0	Date: 10/15/96	Name: Frank Roan

Expanded sections 2 & 3 of orginal WC5 TDD.

Version: 0.0	Date: 00/00/00	Name:

Wing Commander V Technical Programming Specifications	� PAGE �110�

�

