XMIFF - Extended MIFF compiler





Command line switches:  (using '/' or '-')


	-d[symbol]   define a symbol before compiling data


	-i	include path,   e.g.    -i..\dpmi;..\lib\inc


	-big	use Big Endian word arrangement


	+,@	response file





The include path determines the directories that are searched for C/C++ include files using #include, and for including raw data files with #insert.





Big Endian word arrangement is useful for compiling an IFF file for the Mac or 3DO machines.





Use a response file to compile multiple IFF files. Example:


/i..\include;d:\my_prgram\include


world.mif


tummerik


xan  output.fil





This file will compile three IFF source files. If no file extension if supplied, the .XMF extension is assumed. If a second name is supplied, it is used as the output filename. Otherwise, the base name of the source is used, with .IFF added as the extension.





What's New?


XMIFF contains much of the same functionality of the original MIFF program, but with a few extra features thrown in to add flexibility to the MIFF language. In general, syntax changes were made to make MIFF more like the C programming language.  This document assumes that you are familiar with the old MIFF program and its syntax. 





#include


syntax:  #include <filename>, or  #include "filename"


notes:


Use #include to bring C/C++ defines and enumerations into your source file. Use the angle brackets to have XMIFF search for the include file in the include path only. Use the quotation marks to have XMIFF search in the directory of the source file first, then search the include path.





Conditional Compiles:


#if, #ifdef, #ifndef, #else, #endif, and #elif  function just as they do in C.


note:  #if defined()  is not supported in XMIFF.





Labels:


A label is a variable name followed immediately by a colon. The value of a label is its position in the file. Labels can be used in expressions. The most common use of a label is to get the length of a data structure. (See Macros for an example of using labels.) 





When a label is declared inside a CHUNK, its name is "scoped" within that CHUNK. It cannot be referenced from outside that CHUNK.


	


	For example:





CHUNK dat1


{


my_label:


    long   my_label


}


CHUNK dat2


{


    long my_label


} 


my_label:





In this example, the long value written in CHUNK dat1 uses the local label inside the chunk, while the value referenced in CHUNK dat2 uses the global label.





There are 3 special labels that are predefined by XMIFF.





@@:    A nameless label that can be used again and again. Use @f in an expression to get the value of the next @@ label in the file. Use @b to get the previous @@ value.





$	Predefined to be the value of the current position in the file.





Macros:


The macro offers a flexible way to define commonly used values and data structures. The simplest way to use a macro is to define a constant value. For example:


#define MAX_ROCKS   20


...


long   MAX_ROCKS		//   long   20





Another way to use macros is for defining a data structure. Take the following data structure for example:





char  "Jason Yenawine"		// employee name


long   1968			// birth year


short  180			// height, in cm.


char    -1			// sex, 0=NO, 1=YES, -1 =assexual budding





	This structure can be written more clearly with a macro.





#define     EMP_RECORD(name, birth_year, height, sex)         \


			char[80]  name			\


			 long	birth_year 		\


			short     height			\	


			char	sex





#define YES 1


#define NO  0


#define BUDDING -1





	Invoke the macro like this:





EMP_RECORD("Jason Yenawine", 1968, 180, BUDDING)





In the example above, the definition of EMP_RECORD extends over more than one line. Use the '\' character to extend the macro. Macro definitions end on a comment (either //  or /*) or a newline.





You can use macros to define a string type. Strings are not NULL terminated in XMIFF.  To get a NULL terminated string, you must add a zero to the end of the string...or you can make a macro to do it for you.





#define string(x)     char       x,0





Also, you could change the definition of string from the C/C++ convention to the Pascal convention for strings:





#define string(x)    		 	\


		char    @f - $ - 1		\


		char	x		\


		@@:





The first line of this macro calculates the length of the string by subtracting the current file position from the file position after the string.





You can use  '##' to concatenate two symbols together in a macro. For example:





#define ROCKS_EVERYWHERE	200000


#define ROCKS_IN_THE_CITY	1250


#define ROCKS_IN_FRANCE	512


#define X(x)		ROCKS_##x





		long	X(EVERWHERE)		// 200000


		long	X(IN_THE_CITY)		// 1250


		long 	X(IN_FRANCE)			// 512





NOTE:  XMIFF does not detect circularly defined macros.


	For example:   


		#define X X


		long X


	will cause XMIFF to loop until it runs out of memory.





Enumerations:


	XMIFF supports C/C++ enum types.





FORM:


The keyword FORM must be followed by a FORM name. Up to 4 letters can be used. If less than 4 letters are used, 0's are used to pad the name to 4 characters. You can put the name in quotations if you want to pad the name using spaces.


For example:


	FORM AI		// <- padded using 0


	FORM "AI  "		// <- padded using ' '





CHUNK:


The keyword CHUNK must be followed by a CHUNK name. Up to 4 letters can be used. If less than 4 letters are used, 0's are used to pad the name to 4 characters. You can put the name in quotations if you want to pad the name using spaces.


For example:


	CHUNK AI			// <- padded using 0


	CHUNK "AI  "		// <- padded using ' '





Data types:


	XMIFF has 5 defined data types:


	char	-  8 bit signed data


	short	-  16 bit signed data


	long	-  32 bit signed data


	float	-  32 bit single precision


	double 	-  64 bit double precision





Fixed point math:


type.bits  where type is either char, short, or long. 'Bits' is the number of fraction bits. For example:


		long.8		2.5		// 	640 actually stored in file





Data length:


type[len]  where type is either char, short, or long; len is the number of those types to store. You can specify all of the values to be stored, or enter only one.


For example:


long[4]		10,


		20,


		30


This would result in 4 longs being stored. The 4th long would be padding (0). Note also that a line can be continued using the comma. In the above example, if we had entered more than 4 values, the extra numbers would not have been used. Fixed point math and fixed length can be used at the same time. For example:


long.16[16]		2.5, -0.009, 0








Expressions:


Expressions in XMIFF are terminated by a newline or a comma.


Unary Operators:


	~   bitwise NOT.


	!    logical NOT


	-    negative


Binary Operators:


	%  remainder, integer divides


	&  bitwise AND


	|    bitwise OR


	*   multiply


	-   subtract


	+  addition


	/   division


	||   logical OR


	&& logical AND





Order of precedence:


	1) Unary operators, 


	2) *, /  (left to right),


	3) all other operators, in left to right order





Numbers:


	floating point:		[num].[num]	  ex.  5.387


	hexadecimal		0x[num]	  ex.  0x5A92


	octal			0[num]		  ex.  052


	decimal		[num]		  ex.  105662





Variables:


Variables in XMIFF operate in much the same way as in the BASIC programming language. They are global in scope and their type depends on what value they are assigned. Variables can be assigned to an integer type, a quoted string, or a floating point number. For example:





x = 0


y =  "Text string"


z = 2.5


CHUNK DATA


{


	long x


	x = x + 1


	char y


	long z


	z = z + x


}


CHUNK OBJ1


{


	long x


	x = x +1


	long z


}





Messages and Errors:


You can cause lines of text to be printed while your file is compiling. This is useful for determining how far along your compile is, and for determining the value of variables at various stages of compiling.





#print:  print a message to stdout.


#fatal:   print a message to stdout, then terminate compilation.


examples:


x = 0


y =  "Text string"


z = 2.5





#print "Compiling data now..."


@@:


CHUNK DATA


{


	long x


	x = x + 1


	char y


	long z


	z = z + x


}





		#print "Done. Data size = ", $ - @@, ".\n"


		#if !x


 		    #fatal "Error: x is zero!\n"


		#endif





Comments:


	XMIFF allows C/C++ comments, including nested comments.





#insert:


syntax:  #insert <filename>, or  #insert "filename"


To include data directly into an IFF file, use #insert or include (without #).


For example:


CHUNK DATA


{


	#insert "rawdata.dat"


}


XMIFF uses the include path to find the data file. 


